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4a, 5a gives three steps more than a, 0, a, 2a. Hences we can have many sets 
of four numbers of the form 0, a, b9 c having the same number of steps. 

However, we can tell the number of steps of the reduced set 0, a, b9 c in 
the following cases: 

0, 0, 0, a (a > 0) five rows; 0, 0, a, a (a > 0) four rows; 
0, 0, a, b (a < b <_ 2a) f ive rows; 0, 0, a, 2a + x (x > 0) seven rows; 
0, 0, a, na + x (n _> 3) seven rows; 0, a, 0, a (a > 0) three rows; 
0, a, 0, b (a ̂  b) five rows; 0, a, £, c (b-a + c, a = c > 0) three rows; 
Q9 a, b, c (b ~ a + e, a ± a) four rows; 
0, a9 b, c (c = a + &, a = b > 0) four rows; 
0, a, &, c (<? = a + &, a < b) six rows; and 
0, a, b9 c (c = a + b, a > b) four rows. 
From the above, it is clear that the only case which presents difficulty 

in deciding the number of steps without actual calculation is 
0, a, b, c (aba £ 0, b ^ a + c 9 o £ a + b), 

where we can assume a < o. 
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In g e n e r a l , i t i s d i f f i c u l t t o p r e d i c t a t a g lance t h e u l t i m a t e behav io r 
of a l i n e a r r e c u r r e n c e sequence . For example, i n some problems where t h e s e -
quence r e p r e s e n t s t h e v a l u e of a p h y s i c a l q u a n t i t y a t v a r i o u s t i m e s , we might 
want t o know i f t h e sequence i s always p o s i t i v e , or a t l e a s t p o s i t i v e from some 
p o i n t on. 

Consider t he two sequences : 
w0 - 3 , w1 = 3 . 0 1 , w2 = 3.0201 

and 
wn + 3 = 3.0lwn + 2 - 3 .02^ n + 1 + l.01wn fo r n _> 0 ; 

v0 = 3 , i?1 = 3 . 0 1 , v2 = 3.0201 
and 

Vn+3 = 3yn+2 " 3«01yn+l + l-01^n for n > 0, 

The sequence {wn} is always positive, but the sequence {vn} is infinitely often 
positive and infinitely often negative. This last fact is not obvious from 
looking at the first few terms of {vn} since the first negative term is v7B5. 
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Clearly, the behavior of a recurrence sequence depends on the roots of its 
characteristic polynomial. We will prove some results which make this depen-
dence precise. 

Let 

(1) un = a1un_1 + a2un_z + ••• + akun_k9 a^ e R9 1 <_ i £ k9 

denote a fcth-order l inear recurrence with corresponding cha rac t e r i s t i c polyno-
mial 

p{x) = xk - a1xfe_1 - . . . - ak. 
For simplicity we shall assume p(x) has distinct roots (although possibly 

complex). All the results stated here carry through in the case that p(x) has 
multiple roots and we invite the interested reader to verify such cases in or-
der to obtain a more complete understanding. 

The terms of the sequence {un}^=0 defined by (1) can be expressed in terms 
of the roots of p(x) by use of the Binet formula as follows: 

(2) u„ = ^ ^ r." + £ (eaia» + caia?) = 2 > , ^ + £ **&(<>«<<*") 
£ = 1 i = s+l i = l i=s +1 

where ri , 1 <_ i, <_ s, denote the real roots of p(x) and a^, s + 1 <_ i <_ t denote 
the roots with nonzero imaginary parts. It is assumed cVi and oai are nonzero. 

We are now ready to determine under what conditions the tail of the se-
quence {un}n=sQ will contain only positive terms. We begin with a definition. 

Vz^iyujUjDYi' A sequence {un}n = o is said to be asymptotically positive (denoted 
a.p.) if there exists N e Z such that for all n _> N we have un > 0. 

We first prove a lemma that will shed light on the effects of a complex 
root of p(x) on the behavior of the sequence {un}n=0. 

Lmma 1: If 0 ? 0 mod IT, then the sequence {cos(A 4- ̂ 9)}~=09 A,0 £ R9 has in-
tinitely many positive and infinitely many negative terms. 

VHjQOfa1 Ca&Q, 1.—6 is a rational multiple of 2TT. Then there exist integers s 

and t,(s,£) = 15 such that — 2TT = 0. Since 0 ^ 0 mod Tr, we have t >_ 3. Observ-
ing that 

cos (A' + nQ) = Re{ei(x+nd)}9 

we turn our attention to the points {et(A + n d ) } n = 1 in (P. The image points in € 
2 

differ in argument by at most -=-7T radians for any two neighboring points. Thus 

there is always at least one point in each of the half planes Re{s} > 0 and 
Re{z} < 0. Since cos(A + nQ) is periodic with period t, and in every t consec-
utive terms there must be at least one positive and one negative term, the lem-
ma holds. 

Ccu>& 2.—0 is an irrational multiple of 2TT. The sequence {A + nQ}n=0 
is dense mod 2TT. (Indeed, it is uniformly distributed mod 2TT [2].) As the co-
sine is continuous, the image of {A + n0}~=o under the cosine is dense in [-1, 
1], This completes the proof. 

We are now ready to state and prove the main result. 

Tfeeô tem 1 •' Let un be a fcth-order linear recurrence as in (1) whose character-
istic polynomial p(x) has distinct roots. Let T be a root of p(x) such that 
|r| > |y| where y is any other root of p(x) with the exception of y = T when T 
is not real. 

If T > 0 and o > 0, then {un}™=0 is a.p., and {un}™=0 has infinitely many 
negative terms otherwise. 
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Pfiooj: From ( 2 ) , we have 

s t 
un = X X ; ^ + X 2Re(caia») 

i = l i = 8 +1 

o r , assuming T e ^?, and l e t t i n g o = aT, 

(3) u n - e r n ( l + 0 ( 1 ) ) . 

It is clear from (3) that T > 0, o > 0, will insure that {un}^=0 is a.p. and 
that c < 0 or T < 0 will produce infinitely many negative terms. 

If T is not real, we obtain from (3) by use of Euler's formula 

(4) un = \o\ |r|n(cos(arg c + n arg D)(l + 0(1)). 

From Lemma 1, we conclude that {un} has infinitely many negative terms. 

The examples at the beginning of the article serve as a simple illustra-
tion. The sequence {wn} has as its Binet formula wn = ln + ln + (1.01)" ,• which 
is clearly positive for all n >_ 0. However, the roots associated with iun} are 
1, 1 ± /^l/lO. Thus the root called T in Theorem 1 is 1 + /^T/10 which is not 
real. Therefore {un} has infinitely many positive and infinitely many negative 
terms. 

We now discuss the case of p(x) having s distinct roots of greatest mag-
nitude |r|. Again appealing to the Binet formula, we have 

(5) un = |r|M{c1 + (-l)/(n)o2 + o3 cos(A3 + n03) + ••• 

+ oQ cos(Xs + nQs) + o(l)} , ot e IR. 

By letting f(n) = n or n + 1 we may assume a2 >. 0. Also, as the cosine is 
an even periodic function, cos(X + n0) = -cos((X + IT) + n0). Thus when neces-
sary, we may replace cos(X^ + n0^) by cos((A^ + TT) + n0^) and thereby allow us 
to assume o^ >_09 3 <. i <_ s. 

Thzosiem 2: Let un be as in (5). If o1 - o2 - • • • - os > 0, then {un)n = o i s 

a.p. 

VKOO^I Let n > 0 be such that 
s 

Cl - ll°i > Tl > °' 
We have 

wn = |r|n(Cl + (-l)/(n)c?2 + ^3 cos(X3 + n03) + ... + c3(cos(Xs + nd8) + #(n)) 
where #(n) is o(l) . Choose N so large that for n > N9 \g(n)\ < rj/2. Then for 
n > N, 

un = l r | n t e i + ( ~ l ) / ( n ) o2 + cs cos(X3 + n 0 3 ) + . . . + c3 cos(X3 + n 0 3 ) 
+ gM) >. |r|n(n - n/2) - |r|n(n/2) > o. 

Thus { u n } ^ = 0 i s a . p . 

It may be noted that Theorem 2 is the best possible in the following 
sense: Let 

_I + -I 
We have 

un = ^i(l)M + c2(-l)n + ^3 (~ T ) where <?3 {-j) i s ^C 1)-

If we choose o1 = £2 = 1, then cx - c2 = 0. As every other term of un is neg-
tive, {un}n = o is not a.p. Thus the condition o^ - o2 -••• - c3 > 0 may not in 
general be relaxed. 
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However9 upon examining specific cases, it is often possible to improve 
Theorem 2. For example, if 0^ is a rational multiple of 2TT, then 

{cos(Xi + ndi)}n~o 
is periodic. Letting 

ai = | m H c o s ( A ^ + nQi^i=o\ 
we may use, in Theorem 2, the condition 

c1 - c2 - • ... - aici - ... - cs > 0. 

Thus it is evident how improvements of Theorem 2 can be made when more is known 
about the roots of the characteristic polynomial. 

We now consider the special case of second-order linear recurrences which 
are completely characterized by the following theorem. 

TkzofiQjn 3- Le t un = cain_1 + bun_2, asb e R9 be a s econd-o rde r l i n e a r r e c u r -
r e n c e . Le t 

_ a + <S _ a - <S 

be the roots of p(x) = x2 - ax - £ where 6 = /a2 + 42?. {w„}~=0 is a.p. if and 
only if 6 £ R and either 

(i) a = 0, u0 > 0, ux > 0 
or 

(ii) a > 09 2wx > (a - 6)u0 

where uQ, ux are the initial values. 

P/10O$: C(X6e 7.—Suppose that 6 is not real. Since a2 = a^, Theorem 1 applies 
with r = a-L } 0. Thus {un}n = o is not a.p. 

Cctt>£ 2.—a < 0. The root of largest absolute value is a2, and a2 < 0. 
By Theorem 1, iun}™=0 has infinitely many negative terms. 

Ccu>& 3.—a = 0. The recurrence becomes un = bun_2 and the roots of p(x) 
are ±6/2. From the Binet formula, we have 

M" - c i ( ! ) n + c*{-if= ( ! ) n ( c i + (-i)"c2)-
If suffices to show o1 + c2 > 0 and ex - o2 > 0. u0 = o1 + c2 so we must have 

u0 > 0. wx = y(<31 - c2) so that ̂ -ux = e1 - c2 > 0. As T > 0 we have w1 > 0. 

CcU>& 4.—a > 0. The largest root in absolute value is al5 and ax > 0. 
From Theorem 1 it suffices to show o1 > 0. Using Cramer's Rule, we have 

u± - u0a2 

Since ax - a2 > 0, we require that wx - u0a2 > 0 or 2ux > uQ(a - 6). 
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