
1981] SOME CONSTRAINTS ON FERMAT'S LAST THEOREM 375 

3. Now we are in a position to prove (1.3) and (1.4). We have 

S(2m, m) = j(22m + 2a2m + 232 m), 

S(2m9 m - 2) = ±(l2m + 2a2m cos ^ + 2g2m cos ^ V 
so 

S(2m, m) - S^m, m - 2) = j a 2 m ( l - cos ^ ) + | g 2 m ( l - cos ^fj 

= -j=(a2m+1 - 3 2 m + 1 ) 
v5 

= F 
r2m+l9 

which is (1.3a). The derivations of (1.3b) and (1.4) from (2.4) are similar, 
and are omitted. 
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1. INTRODUCTION 

The proof of "Fermatfs Last Theorem," namely that there are no nontrivial 
integer solutions of xn + yn - zn

s where n is an integer greater than 2, is 
well known for the cases n - 3 and 4. We propose to look at some constraints 
on the values of x, y9 and z, if they exist, when n = p, an odd prime. The 
history of the extension of the bounds on is interesting and illuminating 
[3], as is the development of the theory of ideals from Kummer!s attempt to 
verify Fermat's result for all primes [2]. 

2. CONSTRAINT ON z 

It can be readily established that there is no loss of generality in as-
suming that 0 < x < y < z, Since x f y9 z - y >_ 1 and z - x >_ 2. Following 
Guillotte [4], we consider (x/z)1 + (y/z)'1 = 1 + ei9 where eQ = 19 ep = 0, and 
e^z (05 1) for 1 <_ i <_ p. Summing over i from 0 to p, Guillotte further showed 
that 

P 

1/(1 - xlz) + 1 / ( 1 - ylz) > p + 1 + Yuei> 
from which we o b t a i n 

z(l/(z - x) + l / ( s - y)) > p + 2 . 
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Since z(l/(z - x) + l/(z - y)) <_ z(h + 1) ; 

3z/2 2. z/(z - x) + z/(z - y) > p + 2. 
Hence 

z > 2(p + 2)/3. 

Thus, if solutions in integers exist for the case when p = 7, we must have 
s > 6. 

3. CONSTRAINT ON a; 

Now let hx + y = g. Since z - y >. 1, a? >1 1/̂ - It n a s been shown in [1] 
that h < 21/p - 1, and so 

x > l/(21/p - 1). 

Hence, if integer solutions exist for p = 7, we know that xc > 9.607. Since 
z >_ x + 2, we know for p - 1 that s >_ 11.607, which is better than the bound 
found in Section 2. 

k. CONSTRAINT ON y 

Since l/x < 21/p - 1, we have 1 + p/x < 2. Hence, x > p. For the case 
p = 7 we have that, if solutions exist, then x > 7, which is not an improvement 
on the result in Section 3. However, from [1], z ->• y + 1 as p -»• °°, and thus if 
solutions in integers exist for very large values of p, then very large values 
of x and y are involved. We note also, since 

2l/P =t(^n2Y^-> 
that 

21/p - 1 < In 2/(p - In 2), 

which with the results from Sections 2 and 3 gives 

y > p/ln 2. 

When p = 7, this yields x > 9.099 compared with x > 9.607 from Section 3. How-
ever, asp increases, the inequalities become closer, and the simpler y > p/ln 2 
is adequate, y > 1.442695 is also "sharper" than x > p. 

Zeitlin [6] proved that no integer solutions exist for x + ny <_ nz. We 
note that for n = 7, x> 9.607, y> 10.099, z >_ 11.607 as above, x + ny > 80.300 
and nz _>_ 81.249. Perisastri [5] showed that in our notation 

/2x > Sy(l + l/(2p In 2p)). 

For p = 7 and x9 y, z a s above , /lx = 13.586 and fy(l + l / ( 2 p In 2p)) = 3 .264 . 
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