322 [Oct.

ANOMALIES IN HIGHER-ORDER CONJUGATE QUATERNIONS:
A CLARIFICATION

A. L. IAKIN
University of New England, Armidale, Australia

1. INTRODUCTION

In a previous paper [3], brief mention was made of the conjugate quater-
nion P, of the quaternion P,. Following the definitions given by Horadam [2],
Iyer [6], and Swamy [7], we have

&Y Py =Wy + Thyyy + JWnsy + KWy,

n
and consequently, its conjugate ?g is given by

(2) P, =W, = i, ., - JW,

- kW

n n+2 n+3
where
2% = g% =k? = -1, ij = -ji =k,
Jk = -kj = 1, ki = -1k = j.

In [3], T, was defined to be a quaternion with quaternion components P,,,
(r =0, 1, 2, 3), that is,

3 T, = B, + 1Py + Pusy + kPryiss
and the conjugate of T, was defined as

) 52 =Pp - iP%+1 - an+2 . kPn+3
which, with (1), yields

(5) Ty =Wy + W, ) + Wy + Wyye

Here the matter of conjugate quaternions was laid to rest without investigating
further the inconsistency that had arisen, namely, the fact that the conjugate
for the quaternion 7, [defined in (4) analogously to the standard conjugate
quaternion form (2)] was a scalar (5) and not a quaternion as normally defined.
This inconsistency, however, made attempts to derive expressions for conjugate
quaternions of higher order similar to those of higher-order quaternions estab-
lished in [4] and [5], rather difficult. The change in notation from that used
in [3] to the operator notation adopted in [4] and [5], added further complica-
tions. Given that QW, = P, and Q2W, = T,, the introduction of this operator
notation created a whole new set of possible conjugates for each of the higher-
order quaternions. For example, for quaternions with quaternion components
(quaternions of order 2), we could apparently define the conjugate of szn in
several ways, viz. (6)-(9):

(6) OO, = Wy + W, + JW,,, + KW, s
(7 ﬁan =Wy = Wy = Wnsy — KW, 53
(8) Wy = QWy = W,y - Wy, — KW, 43
(9 53Wﬁ =Wn = Wosy = Wopr = Wy = 27.’Wn+1 - 2jh%+2 - 2kWn+3'

It is clear that the difficulties which have arisen are due, in part, to
the choice of the defining notation. It is the purpose of this paper to rede-
fine higher-order conjugate quaternions using the more descriptive nomenclature
provided by the operator notation as outlined in [4]. We are thus concerned
with determining the unique conjugate of a general higher—order quaternion.
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2. SECOND-ORDER CONJUGATE QUATERNIONS

We begin by defining the conjugate of W, as (W, (= P,, c.f. (6) in [3]),
where
(10) W, =W, - iW - g,

n+1 J n+2

~ kW,

n+3°

Consider (6) and (7) above. If we expand these expressions using (10) and (1)
with QW, = P,, respectively, we find that

(11) KW, = SEW, =W, + Wypo + Woyy + Wyygo

which is the same as (5). Since the right-hand side of (5) and (l1) are inde-

pendent of the quaternion vectors %, J, and k, (KW,, $XW,, and T, are not qua-

ternions and, therefore, cannot be defined as the conjugate of Q2%W, (= m We

emphasize that 7,, as defined by (4), 9(a) of [3], is not the conjugate of T,.
Since the expanded expression for %W, (= T,, c.£. 8(a) in [3]) is

(12) 0w, =W, - W - W - W + 27W, + 24W + 2KW.

n+2 n+h n+6 n+1l n+373

n+2

it follows that the conjugate of Q%W, must be %W, as given by (9). If we now

take (8) and expand the right-hand side, we see that it is identical to the

right-hand side of (9), so that the conjugate of $2W, can also be denoted 0%W,.
By taking the product of Q°W, and §°W,, we obtain

(13) QW 2W, = W2 + W2, + WP, + W2

n+2 n+h n+6
+AWE L+ GWE L, + GWE L,
= Wy Wyso = ZWnWypn = 2W, Wy 6

+ 2Wn+2Wn+l+ + 2Wn+2Wn+6 + 2Wn+'+wn+6’

and we observe that the right-hand side of this equation is a scalar. Thus
(%W, preserves the basic property of a conjugate quaternion. _

We note in passing that as P, = W,, the conjugate quaternion T, should
have been defined as [c.f. (8)],

(14) T, =P, -1iP, . - Jb,,, - kB, ,.

n 1 n+2 n+3

3. THE GENERAL CASE

In Section 2 above, the conjugate %W, of Q*W, was determined by expanding
“the quaternion 0%W, and conjugating in the usual way. It was established that
%W, = ﬁTWn. We now seek to prove that this relationship is generally true,
i.e., for any integer A, Q'W, = Q'W,.

First, we need to derive a Binet form for the generalized conjugate qua-
ternion of arbitrary order.

As in [5], we dintroduce the extended Binet form for the generalized qua-
ternion of order A:

(15) O, = Aota? - BB"EA (4,B constants)
where o, and B are defined as in Horadam [1] and

o =1+ 40 + ja* + ka®
(16) :

[

B =1+ B + jB® + kRS,

We now define the conjugates o and B so that
a=1-1ia-jo* - ka®

(17) B
B=1- 18 - jB* - kB®.



324 ANOMALIES IN HIGHER-ORDER CONJUGATE QUATERNIONS [Oct.

Substituting the Binet forms, as given by (l.6) in Horadam [1], for the
terms on the right-hand side of (10), we obtain
ﬁWn = Ag” - BBVL - ’L.(AOL”+1 _ BBn+l) _ j(AOL"+2 _ B6n+2) _ k(AOLn-PSH__ B6n+3)
= Ao"(l - Za - ja? - ka®) - BR™(1 - iB - jBZ - kB®),

i.e.,

(18) W, = Ad"a - BR"B,
which is the Binet form for the conjugate quaternion (W,. This result can
easily be generalized by induction, so that, for A an integer,

(19) W, = 40"a* - BR"B.
Lemma: For some integer A,

a*=o' and B'-p

Proof: We will prove only the result for the quaternion o, as the proof of the

result for B is identical. From (16) above, it follows that
a? = (1 + ia + jo? + ka’)?

(20) =1-0a% -a* - af + 2{0 + 2j0% + 2ka®
=20 - (L+0®+ a* +a®).

Letting
(21) S, =1+a® +a* +ab,
we have
(22) a® = 20 - S,.

Hence, on multiplying both sides of this equation by o, we obtain

a’® = 207 - aS,,

which, by (22) becomes
a® = (4 - Spa - 25,.

If we continue this process, a pattern is discernible from which we derive
a general expression for a} given by

254

(23) g)\ = Z: ()\ - ; - P)zk-l-zr(sq)p(_l)r _(_X_
r=0
B+
> (A U CRLC PN

r=0

where [A ; 1] refers to the integer part of A ; l.
From equations (20) and (22), it is evident that
(24) o = % - S

Since S, is a scalar, and the only quaternion in the right-hand side of

(23) is o, it follows that the conjugate o’ must be
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_ (&3
2.

(25) ol = (A - i - P)zx—l—zr(sa)r(_l)r E
r=0
B2, ,
_ 2: <X i r)zx—z—zr(sa)p(_l)p 5,.
r=0

We now employ the same procedure as we used above to obtain a general ex~
pression for a* [c.f. (23)] to secure a similar result for g*.
From (17) it ensues that
a? = (1 - 20 - ja? - ka®)?

=1-0%-0a% -a® - 240 - 2ja® - 2ka®,
i.e.,
(26) a* =2 - 5,,
and we note that this equation is identical to (24). Multiplying both sides of

(26) by o gives us

o’ = 26° - TS,,

which, by (26), yields
3% = (4 - 84)T - 28,.

It is obvious from the emerging pattern that, by repeated multiplication of both
sides by O and subsequent substitution for G” by the right-hand side of (26),
the expression derived for 0* will be precisely (25). Hence, &* = a*. Simi-

larly, it can be shown that B* = @}.

Theonem: For X an integer, _ -
QW =M .

Proof: Taking the conjugate of both sides of (15) gives us

AOL”E)‘ _ BBn_B_)\

Aa”é?'— BB”E?

Ad"3* - BR"E'  (Lemma)
QA [c.f. (19)]

QM

as desired.

We have thus established that the conjugate for a generalized quaternion
of order A can be determined by taking A operations on the conjugate quaternion
operator l. This provides us with a rather simple method of finding the con-
jugate of a higher-order quaternion.

Finally, let us again consider the conjugate quaternion W,. It readily

follows from (10) that

W, = 2W, - W, - iW - gw - kW

n+1l n+2 n+3?

i.e., _
OW, = 2W, = QW,.

This equation relates the conjugate quaternion OW, to the quaternion OW,.
If we rewrite (27) as

W, = (2 - QW,.

it is possible to manipulate the operators in the ensuing fashion:
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W, = (2 - D, = (& - 40 + Q®WW, = 4W, - 4OW, + Q°W,.

This result can be verified directly through substitution by (1), (9),and (12),
recalling that P, = QW, and szn = Q%W,. Once again, by induction on A, it is
easily shown that

(28) D, = (2 - DMW,.

It remains open to conjecture whether an examination of various permuta-
tions of the operators {} and !, together with the operator A (defined in [4])
and its conjugate A, will lead to further interesting relationships for higher-

order quaternions.
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In a previous paper [l1], we have discussed the properties of the function
f(x) defined as:

x
.

(1) flx) = x*°

and a generalization of f(x), namely [2, 3],

L+ 9n(2)

()’
@ £ @) = g, @)@ :

J

=

gJ.(x).

1

where the g; (x) are functions of a positive real variable x, and the symbol E
is used to denote the iterated exponentiation [4]. For both (1) and (2), the
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