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Z RS, =

i<y

pqz(}?nsrt+1 + Rn+1sn)+ (1 - q) [Rn+zsn+2+ (1 - p2)Rn+lSn+l "ty
A-9dp+qg-{E-qg+1)

n=x-1

ifg+14#0,p+qgq-1#0,p-qg+1#0. (16)

In closing, we note that the expressions of this paper can be used to de-
rive some identities among recurrence terms. As an example consider IR;S; with
R; and S; identical sequences, Ry =S5y =0, #;, =5, =1, p=1, qg=2+ g€, and
limits of summation 0 < Z < #n. As € - 0, the sum approaches a well-defined
value, and thus the right-hand side of (16) must also have a finite limit. Since
the denominator goes to 0, so must the numerator. We conclude that the follow-
ing must be true:

2 |¥=n  _ 2 _
[zsf?y}?“1 - Ry,ﬂ]yhl = 8R,R,,, - R%,, +1 =0
or
8Rpfps1 = (Rpp + 1) (Bpyp = 1)
ifp=1,q=2, R =0, R = 1.
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ITERATING THE PRODUCT OF SHIFTED DIGITS

SAMUEL S. WAGSTAFF, JR.
Northern Illinois University, DeKalb, IL 60115

1. INTRODUCTION

Let ¢ be a fixed nonnegative integer. For positive integers »n written in
decimal as :

k
n=3 d; - 10°,
=0

with 0 < d_ < 9 and d > 0, we define
AN

\

k
fim) = I @ +dy.
=0

Also define f,(0) = 0. Erdds and Kiss [1] have asked about the behavior of the
sequence of iterates n, fy(n), f,(fy(n)),... . They noted that f,(120) = 120.
For t = 0, every such sequence eventually reaches a one-digit number. Sloane
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[2] has considered this case. For ¢ = 1, we prove that the sequence of iter-
ates from any starting point 7 remains bounded, and we list the two possible
cycles. For ¢ > 10, it is clear that f; (n) > n for every n so that the sequence
always tends to infinity. We discuss the cases 2 < £ < 9 and present numerical
evidence and a heuristic argument which conclude that every sequence remains
bounded when ¢ < 6, while virtually every sequence tends to infinity for ¢ > 7.
In Table 1 we give the known cycles in which these sequences may be trapped
when 0 < £ < 6. See also [3] for the case ¢t = 0.

TABLE 1. Some Data on the Cycles of f, for 0 < t < 6

Least Term Cycle First Start # of Starts < 100000

T of Cycle Length Leading to it Leading to it
0 0 1 10 82402
1 1 1 5
2 1 2 3213
3 1 3 15
4 1 4 894
5 1 5 607
6 1 6 6843
7 1 7 15
8 1 8 5971
9 1 9 35
1 2 9 1 92043
18 1 18 7957
2 6 3 2 9927
9 2 1 6
12 1 12 29105
24 1 16 60105
35 1 35 2
56 1 56 811
3 24 10 1 47955
648 2 134 52045
4 96 5 1 6793
112 16 37 70677
120 1 29 20
315 1 135 6
1280 2 589 4798
2688 3 1289 6971
4752 1 1157 90
7744 1 4477 185
15840 2 4779 9992
24960 1 10489 378
57915 1 15579 90
5 50 1 50 1
210 1 57 6
450 1 3 222
780 1 158 10
1500 1 4 35726

(continued)
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TABLE 1 (continued)

Least Term Cycle First Start # of Starts < 100000

t of Cycle Length Leading to it Leading to it
5 1600 3 228 7058
3920 1 22 91
16500 1 1339 146
16800 4 1 4927
32760 4 368 51483
91728 1 11899 300
1293600 1 38899 30
6 90 1 34 3
840 1 4 40
4320 1 3 329
9360 2 35 550
51744 5 18 2626
59400 1 7899 300
60480 1 6 3300
917280 1 7777 493
2419200 1 26778 12
533744640 62 38 10968
1556755200 21 1 25484
139089000960 85 5 5895

2. THE CASE £ =1

This is the only nontrivial case in which we can prove that every sequence
of iterates is bounded.

Theorem: Let n be a positive integer. Then f,(n) = n if and only if n = 18.
Also f,(n) > n if and only if n = d + 10¥ - 1, where Xk > 0 and 2 < d < 10. In
In the latter case, f;(n) =n + 1. Iteration of f, from a positive starting
number eventually leads either to the fixed point 18 or to the cycle (2, 3, 4,
5, 6, 7, 8, 9, 10).

Proof: If m =d + 10¥ = 1 with 2 < d < 10, then the digits of n are d - 1 and
k nines. Thus f;(n) =d - 10X =n + 1. Now suppose XK > 1 and n has k + 1 di-
gits, but 7 is not of the form d - 10¥ = 1. Then the low-order k digits are

not all nines. Write
k
?’L=Zd,_ ° 101,
i=0

and let j be the greatest subscript such that j < k and d; < 9. Then

(1 F) ' (g + 1 (g + 1)10¢
L= dy - 10K 4+ dy » 10F7Y 4+ (1 + dy(dy; - 9))10%71,

Now dj — 9 < -1 and dy > 1. Hence the last term of (1) is nonpositive, and it
vanishes if and only if dix = 1 and d; = 8. Hence f;(n) < n if either d; > 1 or
d; <8, Ifdy=1 and dj =8 and j < k - 1, then also f,(n) < n. Otherwise,
either n = 18 [and f1(18) = 18] or n has at least three digits, the first two
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of which are 18. 1If any lower-order digit were nonzero, the inequality in (1)
would be strict and give f,(n) < n. Finally, if n = 1800...0, clearly

fi(m) = (1 4+ 1)(8+1) =18 < #n.

The last statement of the theorem follows easily from the earlier ones by in-
duction on n. TFor n > 18, either fi(n) <nox FL(FL ) < n.

3. THE CASES ¢ = 2 THROUGH 6

These five cases are alike in that there is compelling evidence that all
the sequences are bounded, but we cannot prove it. In Table 1 we gave some data
on the known cycles of f for 0 < ¢ < 6. Table 2 lists the cycles of length >
1. For ¢ <5, every starting number up to 100000 eventually reaches one of
these cycles. For ¢ = 6, the same is true up to 50000.

TABLE 2. <Cycles of at Least Two Terms

t Cucle

1 (29 3y Ay S by 79 8y 2y 10)

2 (b6 8y 10D

2 (2y 113

3 (24y 3%y 48y 77y 100y 3 54y 5oy 72y HO)

3 (4648 6930

4 (P& 130y 140y 140 2000

4 (1129 150y 180y 2405 192y 390s 344 560y 3605 280y 288, B64»
P60y 520y 216 3003

4 (1280 1440)

4 (2688y 8B640r 3840)

4 (15840 17280

5 (146009 1650y Z2300)

5 (146800y 21450 18900, 27300

5 (32760 36960y 67760 87120}

& (2360 9720)

& (51744 100100Cy &3504, 71280 61152)

& (53Z3744640 833978000y H731489460r 186345929460 10777536000y

2IL7BR46592y 199264665600 1034643456000 1163973888000
5504714691840y 4992425440000 2463436800000y 1015831756800y
2A6EP2769E232y 20495794176000 34H4280714680000y
LA37946628468480, 2796049553776000y 654B724648601600y
FO30057402346800y 94421561794560y 1198701350400000»
RBEI421981 4400 41821194240000 5974406320000
2642035948000 2483144294400y 3048192000000y 296284262400y
445906944000y 384912000000 49380710400y 22289904000y
20901888000y 17923348960y 160487308800y 349T05E94720y
1100848320000y 3224620641280, 187280916480y 906125875200y
3BIEB4481280, 1150082841600 20066273280y IPL2BIEIGIES0y
4999794692800y 4774408000000 794794291200y 919900800000
PREE/EIR000s S63T0HEBLE0y 49702102848y 138462736000y
I8H169541120 4518182592200 4016162304005 65840947200y
42270208000, 8495185408, 25101014400y 39118456400,
A4000752000)
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Cucle
(15984795200
45746860288y
J2H27G5955200
24455208960
61138022400y
15744640000)
(1320890009260
A486BUT7226240
438126726800
2661620290540
IBA4GL26419200y
106051785840000y
118144020234240y
18931558464000y
41422897152000
14978815488000y
219583673971200y
203251004006400y
105450861035520y
80853160320000
2218016908800y
1001440804891200y
HEH7251328000y
386970201444640
3894492202468800
1991688465280005
424994146960000y
45218873700000¢y
14425516385280,
2445520896000y
2742745743360y
PA327 2345600y

70

Some cycles may by reached from only finitely many starting numbers.
example, it is easy to see that fs(n) = 50 only when »
for f, may be reached only from the odd numbers below 12.

4604535936y
27122135040y
473609410560y
203568000y
102

277766496000y
12
PP8EBT7HPP200
2648687247360y

2007417323520y

)
an

oy ey

oW

020284416000y
480370176000)
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TABLE 2 (continued)

41925120y

398469030400y

48283361280000¢y
84580378122240y
477958650560000y
406463643328000
16273281024000>
B7214615488000y
b4
14898865766400

1124640192461440y
3112798740480y
11

736063320064y

2262064128000y
761808265216y
42796615680000y
PR1I77326080000y
82805964595200y
JH271936000000y
14279804098560
H30133424128000
2128448000y

127020946000y
11623772140y
420323904000y
246592002368y
104315

284031027200,
Q222
4903778880000,
19781546803200

2591184435200y

72

sy

wusd

877879296000y

8151736320y
28848089088y
60466176000y
6876230400y

20400y 2430344000y

142655385600
983224811520
4868115033600y

131924680005

15485790781440

37781114342400>
18284971622400y
6390961274880y
39869538508800y
309818234880000y
236304176128000»
119489126400000y
6310519488000y
6GAEPBRP3760y 1476697036800y
G742112993280y
P0429898752y J77772GPG20000y
37661021798400y
13352544092160y
P7371445248000y
GA47397795840
PLEI720G760000
7604629401600y
03581696000y 2390026383360y
2009043347200y

For
50. The cycle (9, 11)
Only 35 and 53 lead

to the fixed point 35 of f,. It is a ten-minute exercise to discover all twenty

starting numbers which lead to the fixed point 120 of fy.

The fixed point 90

for fg may be reached only from the starting numbers 34, 43, and 90.
Given a cycle, what is the asymptotic density of the set of starting num-

bers which lead to it?
for ¢t = 1.
1.
is clear din case t = 0.

' k.

THE CASES ¢t = 7

We cannot answer this question even for the two cycles
Some relevant numerical data is shown in the last column of Table
Since the digit O occurs in almost all numbers, the answer to the question

THROUGH 9

The starting number 5 leads to the fixed point 31746120037632000 of f,. We
found no other cycles in these three cases.

ber up to 1000 rises above 10%*%,
and 12 for f,) rises above 10300,

Every sequence with starting num-

Every sequence starting below 17 (except 5
These observations, together with the heur-

istic argument below, suggest that nearly every sequence diverges to infinity.
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When 7 < ¢ < 9, it usually happens that f, (n) > n. The least n with f, (n)
< n is 700, 9000, 90000000, for ¢ = 7, 8, 9, respectively.

The sequences show a strong tendency to merge. We conjecture that there is
a finite number of sequences such that every sequence merges with one of them.

5. THE HEURISTIC ARGUMENT

Let ¢ be a fixed positive integer. Consider a positive number »n of k di-
gits, where k is large. For 0 < d < 9 and most 7, about k/10 of the digits will
be d. Thus

2 9
foe) < [L@+ 00 = @), wherep, = ([ @+6)".

This means that f, (n) will have about k * log,,p; digits. From Table 3, it is
clear that this implies that f, ) < n for most large n when 1< ¢< 5, and that
fe M) > n for most large n when 6 < t < 9.

It is tempting to apply the same reasoning to the subsequent terms of the
sequence. Note, however, that f;(#n) cannot be just any number. About one-fifth
of the digits of n are = -t (mod 5) and about half of them have the same parity
as t. Hence the highest power of 10 that divides f, () is usually about 10%/%,
so that f, (n) will have many more zero digits than other numbers of comparable
size. It is plausible that, after several iterations, the fraction of digits
which are low-order zeros will stabilize. Furthermore, it is likely that the
significant digits will take on the ten possible values with equal frequency.
Suppose we reach a number m of k digits. Assume there are constants a, b, s,
which depend on ¢t but not on m or kK, so that (i) m has about ak low-order ze-
ros, (ii) each of the ten digits occurs about bX times as a significant digit
of m, and (iii) f, (m) has about sk digits, of which approximately ask are low-
order zeros. Then a + 10b = 1 and

(2) ask ~ min(ord, (f: (m)), ord, (fi (m))),
where ord,(w) denotes the ordinal of w at the prime p. By hypotheses (i) and
(ii), we have
Fm) = 0+ )R+ )R Ll (9 + 6)PF = (zerd)k,
where

9
T, = d[L(d + ).

Since sk ~ log,,f,(m), we find
(3) s ~ a log, t + b log ;-
When ¢ = 5, equation (2) becomes
ask ~ min(8bk, ak + 2bk)

because 8 = ord,m.,. Hence as =~ 8b, so

o8 o8
a*gyi0s 2 b=grios

Substitution in (3) gives a quadratic equation in s whose positive root is shown
in Table 3, together with g and b.
If 1 < ¢ < 9 and ¢ # 5, then (2) becomes
ask ~ min(ga_k + hbk, bk + bk)’
where g > 0 and % > 7. Hence as ~ 2b, and we find

_2 . 8
a~53710s 2 P35 Ts
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Using (3) produces a quadratic equation in 8 whose positive root is given in
Table 3.

TABLE 3. Values of p, and s for 1 < ¢ £ 9

t p, log, P a b s

1 4.5 0.66 0.30 0.070 0.46
2 5.8 0.76 0.23 0.077 0.65
3 6.9 0.84 0.21 0.079 0.76
4 8.0 0.90 0.19 0.081 0.84
5 9.0 0.96 0.49 0.051 0.83
6 10.086 1.0037 0.17 0.083 0.965
7 11.1 1.05 0.16 0.084 1.013
8 12.2 1.08 0.16 0.084 1.06
9 13.2 1.12 0.15 0.085 1.09

We may defend the third hypothesis this way: If we had assumed that f(m)
had about the same number of digits as m, i.e., that 8 = 1, and followed the
remainder of the argument above, we would have concluded that the sequence forms
an approximate geometric progression, which is the essence of (iii). There is
no other simple assumption for the change in the number of digits from one term
to the next.

The few sequences we studied with 7 < ¢ < 9 behaved roughly in accordance
with the three hypotheses and the data in Table 3.

In summary, for most large n, f,(n) will have many fewer digits than #n for
1 <t <5, about 0.37% more digits when ¢ = 6, and substantially more digits
for 7 < ¢ < 9. However, after several iterations, when we reach a number m,
say, it will usually happen that f, (m) has many fewer digits than m for 1 < ¢
< 6 and many more digits for 7 < £ < 9. Thus if we iterate f;, the sequence
almost certainly will diverge swiftly to infinity for 7 < £ < 9, but remain
bounded for 1 < ¢ < 6.

Numbers in the image of f, not only are divisible by a high power of 10,
but all their prime factors are below 10 + ¢#. How this property affects the
distribution of digits in such numbers is unclear. There are only 0(log¥x) of
them up to &, where » is the number of primes up to 9 + t.

Let 1 < ¢t < 6, and suppose that iteration of f; from any starting number
does lead to a cycle. How many iterations will be required to reach the cycle?
The above heuristic argument predicts that about

(log, ,log, ;n) /(~log,,8) + O(L)

iterations will be needed, which is very swift convergence indeed. In the case
t = 0, Sloane [2] has conjectured that a one-digit number will be reached in a
bounded uumber of iterations. The sequence for ¢ = 6 starting at n = 5 does
not enter the 85-term cycle until the 121st iterate.

The author thanks P. Erdos for suggesting the problem and A. Odlyzko for
supplying reference [2]. He is grateful to the computer centers of the Univer-
sity of Illinois and Northern Illinois University for providing the computer
time used in this project.
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ON MAXIMIZING FUNCTIONS BY FIBONACCI SEARCH

REFAEL HASSIN
Department of Statistics, Tel Aviv University, Tel Aviv 69978

1. INTRODUCTION

The search for a local maximum of a function f(x) involves a sequence of
function evaluations, i.e., observations of the value of f(x) for a fixed value
of x. A sequential search scheme allows us to evaluate the function at differ-
ent points, one after the other, using information from earlier evaluations to
decide where to locate the next ones. At each stage, the smallest interval in
which a maximum point of the function is known to lie is called the interval of
uncertainty.

Most of the theoretical search procedures terminate the search when either
the interval of uncertainty is reduced to a specific size or two successive
estimates of the maximum are closer than some predetermined value. However, an
additional termination rule which surprisingly has not received much attention
by theorists exists in most practical search codes, namely the number of func-
tion evaluations cannot exceed a predetermined number, which we denote by N.

A well-known procedure designed for a fixed number of function evaluations
is the so-called Fibonacci search method. This method can be applied whenever
the function is unimodal and the initial interval of undertainty is finite. In
this paper, we propose a two-stage procedure which can be used whenever these
requirements do not hold. In the first stage, the procedure tries to bracket
the maximum point in a finite interval, and in the second it reduces this in-
terval using the Fibonacci search method or a variation of it developed by
Witzgall.

2. THE BRACKETING ALGORITHM

A function f is unimodal on [a,b] if there exists a < % < b such that f(x)
is strictly increasing for a < & < ¥ and strictly decreasing for ¥ < & < b. It
has been shown (Avriel and Wilde [2], Kiefer [6]) that the Fibonacci search
method guarantees the smallest final interval of uncertainty among all methods
requiring a fixed number of function evaluations. This method and its varia-
tions (Avriel and Wilde [3], Beamer and Wilde [4], Kiefer [6], Oliver and Wilde
[7], Witzgall [10]) use the following idea:

Suppose y and 2z are two points in [a, b] such that y < 2z, and f is unimodal,
then

fly) < f(zg) implies y < x < b,
f@y) > f(2) dimplies a <% < 2, and
fly) = f(z) implies y < T < z.

Thus the property of unimodality makes it possible to obtain, after examin-
ing f(y) and f(8), a smaller new interval of uncertainty. When it cannot be
said in advance that f is unimodel, a similar idea can be used.

Suppose that f(x1), f(£2), and f(£3) are known such that

(1) £y < X, < x; and f(x,) > max{f(xy), flxs)},



