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(5.6) p("_1)(i) - ( w ~ 1 ) ! e , ,. 

For example, 

p'̂ Cl) = 24 - 360 + 472 = 136, 

in agreement with (5.6). 
(Please turn to page 465.) 
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HOW TO FIND THE "GOLDEN NUMBER" WITHOUT REALLY TRYING 
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". .. . I WAJbh , . . to potnt out that the, aae ol thu qold<in A&ction . . . 
hcu> appaxtntly bu/a>t out -into a &uddm and d&voAtattng dLuzaAz whtch hah 
&hou)n no AtgnA o& stopping .. . .f? [2, p. 521] 

Most of the papers involving claims concerning the "golden number" deal with 
distinct items such as paintings, basing their assertions on measurements of these 
individual objects. As an example, we may cite the article by Hedian [13]. How-
ever measurements, no matter how accurate, cannot be used to reconstruct the ori-
ginal system of proportions used to design an object, for many systems may give 
rise to approximately the same set of numbers; see [6, 7] for an example of this. 
The only valid way of determining the system of proportions used by an artist is 
by means of documentation. A detailed investigation of three cases [8, 9, 10, 11] 
for which it had been claimed in the literature that the artist in question had 
used the "golden number" showed that these assertions were without any foundation 
whatsoever. 

There is, however, another class of papers that seeks to convince the reader 
via statistical data applied to a whole class of related objects. The earliest 
examples of these are Zeising's morphological works, e.g., [17]- More recently 
we have Duckworth's book [5] on Vergil's Aeneid and a series of papers by Benja-
field and his coauthors involving such things as interpersonal relationships (see 
e.g. [1], which gives a partial listing of some of these papers). 

Mathematically we may approach the question in the following way. Suppose we 
have a certain length which is split into two parts, the larger being M and the 
smaller m. If the length is divided according to the golden section, then it does 
not matter which of the quantities, m/M or M/(M + m), we use, for they are equal. 
But now suppose we have a collection of lengths and we are trying to determine 
statistically if the data are consistent with a partition according to the golden 
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section. Authors invariably use Ml (M + m), but we may reasonably ask which of the 
two we should really use or whether or not it matters. 

Our starting point is a remark by Dalzell in his review of Duckworth's book: 
"But Professor Duckworth always uses the more complex ratio Ml (M + m), which he 
describes as 'slightly more accurate.1 Just the reverse is true. In the rela-
tively few instances when the quotient is exactly .618 then m/M= Ml (M + m) and it 
does not matter which ratio is used. But in all other cases the more complex ra-
tio is less sensitive to deviations from the perfect figure of .618" [4]. 

Let us designate m/M by x9 then M/(M + m) becomes 1/(1 + x) . The golden num-
ber is $ = (1 + /5)/2, and we let <p = 1/$. We then have 

ValzoZt'A Thdotizm: For all x in [0, 1]; 11/(1 + x) - <p\ <. \x - <p\ . 

Why should this result be true? Intuitively, we might reason that in writing 
1/(1 + x) we are starting to form the continued fraction expansion of <p. We shall 
see later that in a sense our intuition is correct, but that there are limits to 
its validity. As a direct proof via continued fractions seems difficult, we use 
a roundabout approach. 

Lommcii Let f be dif ferentiable on [a, b] with \f'\ <_ M. If a is a root of f(x)-x 
(i.e., a fixed point of f), then \f(x) - a\ <_ M\x - a\ on [a9b]e 

VHjQOfc Mean value theorem. 

CoHjottoJiy: Dalzellfs theorem. 

Alternatively, we can obtain the estimate \f(x) - f(y)\ <. [1/(1 + a)2]|x - y\ 
with f(x) = 1/(1 + x) , 0 j<. a <_ xs z/, by simple computation. This shows directly 
that / is a contraction operator with fixed point <p. In particular, when we re-
strict ourselves to an interval bounded away from 0, we see that the distortion 
caused by using M/Qd+m) instead of m/M is larger than that indicated by Dalzell!s 
theorem. 

CoKollaAy: On the interval [a, 1] where a = Jl - 1 = .414..., 

(1 + x) - <P s 1| I 

Note in fact that as x ranges from .5 to .75, 1/(1 + x) only ranges from .667 
to .571. 
CotiolZcUiyi For x c l o s e to <ps 

11/(1 + x) - <p\ * (<p2)\x - <P\ (<P2 = 1 - <p = . 3 8 1 . . . ) . 

Because of its independent interest we now make a slight digression into con-
tinued fractions. We restrict ourselves to the unit interval and therefore write 
[0, a19 a2, ...] for l/(ax + l/a2 + • • • ) • 

Tk<LQK<m* Let a £ [0, 1] have a periodic continued fraction expansion of the form 

a = [0, ax, a , ..., a^]. Then for any number x in [0, 1], 

| [0, als a2, ..., ak9 x] - a| <. \x - a| . 

Vnoofc Define / by f(x) = [al9 al9 ..., ak9 x], then, by the periodicity, 

Ax + B 
/(a) = a. Furthermore, f(x) = -̂ —~r~fj> where the coefficients are integers which 
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do not depend on x and satisfy \AD - BC\ = 1 (A/C and B/D are, respectively, the 
(k - l)st and kth convergents to a; see [12, Th. 175] and [15, Th. 7.3]). From 
this we obtain |/f(#)| = 11 \ {Cx-\~ D) \2 < 1 on [0, 1], The proof is concluded by use 
of the lemma. 

CoKollaAy: Dalzell's theorem. 

Vh£Oi} > = [0, 1, 1, 1, . . . ] ; [0, 1, X] = 1/(1 + x). 

RojmoJik' This theorem justifies our earlier intuitive remark as to why Dalzell's 
theorem should hold; however, our intuition will lead us into difficulties unless 
we stop at the end of a period. Indeed, if a = [0, ̂ , ..., bk] and j < k9 then 
for x = a, x - a is zero, whereas [0, bl9 ..., bj, x] - x is not zero. 

RemcUik* The above approach can be used to place some results involving continued 
fractions in the domain of attraction of fixed points and contraction operators, 
but we shall not pursue this path here. 

RemaAk: It is known that every periodic continued fraction is a quadratic surd, 
i.e., an irrational root of a quadratic equation with integral coefficients, and 
conversely ([10, Ths. 176, 177] and [15, Th. 7.19]). In the case of a =<p, the 
corresponding equation ±s x2 + x - 1 or x = 1/(1 + x). One would thus be tempted 
to treat the general periodic case as follows: Suppose a satisfies Ax2 + Bx = C. 
We rewrite this as x = f(x) ~ C/(Ax + B), and would like to conclude that 

\f(x) - a| <. \x - a| 

as above. However, we run into difficulty because we no longer have a control on 
/ ' • 

Let us now turn our attention to the statistical aspects. We denote random 
variables by capital letters, expectation by E9 variance by a2, and standard devi-
ation by SD. We restrict ourselves to distributions with continuous densities 
concentrated on the unit interval. By the second corollary above (p. 407) and the 
Mean value theorem for integrals, we have immediately— 

Tko.OXem: If I is a random variable taking values in a small interval near , then 
the ratios PX = \E(X) - <p\/\E(I) - <p\ and r2 = SD(J)/SD(J) are both near $2. 

Now consider a general "aesthetic" situation involving lengths of various 
sizes. We should not be surprised that, rather than being controlled by some mys-
tical numerical force, our ratios m/M occur randomly. Furthermore, in situations 
such as the lengths of sections in a poem, there will be a tendency to avoid the 
two extremes of complete asymmetry and equality, i.e., we can expect values rela-
tively far away from 0 and bounded away from 1. 

Thus we are led to consider the situation where X is uniformly distributed on 
a subinterval [a, b] of the unit interval. In this case, E(X) = (a 4- b)/2 and 
a2(J) = (b -a)2111 [14, pp. 74, 101, 111] and straightforward calculations [14, 
p. 78] now show that the distribution functions of I = 1/(1 + X) assigns weight 
{lie - l/d)/(b - a) to a subinterval [e9 d] of [1/(1 + b), 1/(1 -f a)]. Further-
more, 

E^ = ( r b ) ' ln(fri) and *2(J) = (i + a'd + b)~ [W-
Note that if [c9 d] is contained in [1/(1+2?), 1/(1+ a)] and also in [a, b] 

then the distribution function of y assigns l/od times more weight to [o9 d] than 
does the unifrom distribution on [a, b]. Under these conditions, if [o9 d] is a 
small subinterval about 1/$, then this ratio is approximately $2 = 2.618, i.e., 
for a large sample over two and one-half times as many values of the transformed 
data as of the untransformed values will lie in the interval. Also note that the 
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weight assigned by the distribution of Y to an interval [c9 d] depends only on 
the length of the interval [a, b] and not on the actual values of the endpoints. 

In fact, numerical computation shows that even for large intervals relatively 
far away from 0 and bounded away from 1 the ratios r1 and r2 as well as the prob-
ability .ratios will not be too far from 2.6. To illustrate this situation, let us 
suppose that our ratios are uniformly distributed on [.45, .70] so that the aver-
age value is .575 and the standard deviation .072. For a large sample, only 16% 
of the values will fall in the sub interval [.60, .64]. If we now transform the 
data, the mean is .636 and the standard deviation only .029. This means that for 
a sample size of 20 or so it is almost sure that the mean will lie in the interval 
[.607, .665]. Furthermore, for a large sample, 42% of the actual values of l/(l+#) 
will lie in our subinterval [.60, .64]. If we look at [.59, .65], then the prob-
abilities are 24% and 62%. 

Finally, to support our claim that the various seemingly impressive results in 
the literature are really due to an invalid transformation of data from a more or 
less uniform distribution, we mention two case studies. 

The first is due to Shiffman and Bobko [16] who considered linear portionings 
and concluded that a uniform distribution of preferences was indeed the most like-
ly hypothesis. 

The other, a study on Duckworth1s data, was done by the present author in con-
nection with a historical study [3] of the numerical treatment of $ by Hero of 
Alexandria who lived soon after Vergil. If we consider the first hundred entries 
in Duckworth1s Table I, then the range of the m/M values is from 4/7 = .571 (four 
times) to 2/3 = .667 (twelve times). If this range is split up into five equal 
parts, then the five subintervals contain 10, 25, 33, 15, and 17 values, respec-
tively. When we look at the actual values, we note that the Fibonacci ratios 3/5, 
5/8, and 13/21 appear 15, 16, and 2 times, respectively. In other words, 2/3 of 
the ratios are not Fibonacci approximations to the "golden number." If we compute 
means and standard deviations, then for the m/M ratios we obtain the values .621 
and .025 as opposed to the values .616 and .010 for the M/(M + m) ratios, which 
only range from .600 to .637. It is interesting to note that if Vergil had used 
the end values 4/7 and 2/3 fifty times each, then the average would have been 

2V7 3/ 21' 

which is a good Fibonacci approximation to <p. This only proves once more how de-
ceiving averages can be. A similar study of the sixteen values in Duckworth's 
Table IV—the main divisions—reveals that not a single Fibonacci ratio appears. 
The m/M values range from .594 to .663 with a mean of .625 and standard deviation 
of .021 as opposed to values of .615 and .008 for the M/(M + m) values. 
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EXTENDED BINET FORMS FOR GENERALIZED QUATERNIONS OF HIGHER ORDER 
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In a prior article [4], the concept of a higher-order quaternion was estab-
lished and some identities for these quaternions were then obtained. In this 
paper we introduce a "Binet form" for generalized quaternions and then proceed to 
develop expressions for extended Binet forms for generalized quaternions of high-
er order. The extended Binet formulas make possible an approach for generating 
results which differs from that used in [4]. 

We recall from Horadam [1] the Binet form for the sequence Wn(a9 b; p, q), 
viz. , 

Wn = Aan - SBn 

where 
W0 = a, W1 = b 

. b - a$ ' b - aa 
A — 7T-9 D — 7T-

a - 3 a - 3 

and where a and 3 are the roots of the quadratic equation 

xz - px + q = 0. 

We define the vectors a, and _3 such that 
a = 1 + ia + ja2 + to3 and 3 = 1 + i& + J*32 + k$3, 


