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In the case where the ring R is Z, the set of integers, we can determine the

total number of different solutions mod (e, f), or %.

This number of solutions will be the smallest positive integer # such that

(nblel, 1) =0 mod (e, ),

i.e., such that elnblelf.

Now, as we can assume that e and f and g and b are mutually prime, this reduces
to i|n, so the smallest »n is 7.

" Thus in the ring of integers, the number of noncongruent solutions mod (e, f)

of (1) is <.

Take, as an example,

1552 = 2 mod 20

Clearly, g.c.d. <15§%3 20%%) = T%E'%’ and we can obtain x = -89 as a solution to

4(15.39 + 5)x
Now bl comes to 3 and e, to 209, so the simplest noncongruent positive integer

solutions, mod 205%, are 194, 821, 1448, 2075, and 2702.

11

26.5 mod (60.52 + 15).
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If p(n) denotes the number of unrestricted partitions of z, the following re-
currence formula, known as Euler's identity, permits the computation of p(n) if
p(k) is already known for k < n.

(1) p(n) = pn-)+pn-2)~pn-5)-pn-7)+pn-12)+pn-15)-—++ ---

= T ¥ p(n - 3657 + ),
J#0
where the sum extends over all integers j, except j = 0, for which the arguments
of the partition function are nonnegative.
Hickerson [1] gave a recursion-type formula for g(#), the number of partitioms
of »n into distinct parts, in terms of p(k) for k < n, as follows,

(2) gy = 3. Dipn - 35° + D),

J=-

where the sum extends over all integers J for which the arguments of the partition
function are nonnegative.

Alder and Muwafi [2] gave a recursion-type formula for p’'(0, kX - r, 2k + a; n),
the number of partitions of » into parts # 0, *(k - r) mod 2k + a, where 0 < r <

k- 1.
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(3) p' (0, k - ry 2k + a3 n) = :E: (‘l)jp<n _ 2k + a)j? Z (2r + a)j>

J==w

where the sum extends over all integers j for which the arguments of the partition
function are nonnegative. Letting Xk = ¢ = 1 and r = 0, formula (3) reduces to Eu-
ler's identity; and letting Xk = ¢ = 2 and » = 0, formula (3) reduces to Hickerson's
formula (2).

Ewell [3] gave two recurrence formulas for g(28) and g(22+ 1) for nonnegative
integers { in a slightly different, but equivalent, form to that in formula (2).

This paper presents a recursion-type formula for pf(n), the number of parti-
tions of n into parts not divisible by k, where k is some given integer > 1. It
is shown that formulas (1) and (2) are special cases of formula (4) below.

Theorem: 1If w > 0, k > 1, and p¥(n) is the number of partitions of n into parts
not divisible by k, where pf(O) =1, then

G . -2 .
(4) pr(n) = (-U"p(n - -&7—5—1’-4)»,
J==

where the sum extends over all integers j for which the arguments of the partition
function are nonnegative.

Proof: The generating function for p*(n) is given by

‘ﬂ (1 - zkd) .
Z pF () = —%‘———— = Zp(lﬂ)x”n (1 - xkdy,
n=0 I](l - x9) r=0 j=1

By Euler's product formula, we have

© kj(37+1)
Ma-e¥) = 3 (uia
Hence i=1 j=-e kgGJ+D
> pFx = Zp(r)x"z -1z
n=0 »=0 j=-o
] Z {Z( 175 &Jlﬁ%i.&)}x

Equating coefficients on both sides of this equation, and noticing that j§ = 0 when
= 0, we get the required result in (4).

Cornollarny 1: If in Eq. (4) we let k = 1, then p?(n) = 0, so that Eq. (4) becomes

- oip (v L &} 7).

J=~

from which Eq. (1) follows by moving the term corresponding to j = 0 to the left-
hand side. Thus Eq. (1) becomes a special case of the theorem.

Corollary 2: 1f in Eq. (4) we let k = 2, then p%(n) denotes the number of parti-
tions of » into parts not divisible by 2, and hence it is equal to the number of
partitions of 7 into odd or distinct parts. Thus pz(k)"'q(n), and Eq. (4) reduces
to (2). Hence Eq. (2) is a special case of the theorem.
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A primitive Pythagorean triple is a triple of natural numbers (x, y, z) such
that x2 +y? =22 and (x, y) = 1. It is well known [1l, pp. 4-6] that all primi-
tive Pythagorean triples are given, without duplication, by

x=2m, y =m? -n?, 3 =m*+n?,
where m and n are relatively prime natural numbers which are of opposite parity
and satisfy m > n. Conversely, if m and »n are relatively prime natural numbers
which are of opposite parity and m > »n, then the above formulas yield a primitive
Pythagorean triple. In this note I will refer to m and n as the generators of the
triple (x, Yy, 8) and I will refer to & and y as the legs of the triple.

A study of the sums of the legs of primitive Pythagorean triples leads to the
following interesting variation of Euclid's famous proof that there areodnfinitely
many primes. '

Suppose there is a largest prime, say p,. Let m be the product of this finite
list of primes and let n = 1. Then (m, n) = 1, m > n, and they are of opposite
parity. Thus m and »n generate a primitive Pythagorean triple according to the
above formulas. If x + y is prime, it follows from

x+y=2m+ m?> = n2=2(2 ¢ 3 ¢ eee o p) + (223 ¢ see e pk)2 -1> pz
that x+y is a prime greater than p, . If x+y is composite, it must have a prime
divisor greater than p,. This last statement follows from the fact that every

prime g< p, divides m and hence divides z. If q divides x + y, then it divides
Y, which contradicts the fact that (x, y, 2) is a primitive Pythagorean triple.
Thus the assumption that P, is the largest prime is false.

By noting that

Yy - x

(2 ¢ 3 ¢ eov o pk)Z -1 = 2(2 ¢ 3 ¢ co" o pk)
202 ¢+ 3 ¢ see o pk)(3 s e p - 1) -1> P, >
a similar proof can be constructed by .using the difference of the legs of the
primitive Pythagorean triple (x, y, 2)-.

The following lemma will be useful in proving that there are infinitely many
primes of the form 8% * 1.

Lemma: If (xz, y, z) is a primitive Pythagorean triple and p is a prime divisor of
z +y or |z - y|, then p is of the form 8¢ # 1.

Pnooﬁ: Suppose p divides x + y or lx - yl. Note that this implies
(xs p) = (y> p) =1, and x = *y (mod p)
so that



