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We shall employ the notation

u = 0, uy =1, Wep = un+un_1 =1 ,
Vo = 2, vy = 1, el = Vot Voo n =1)
Thus
n n
_a -8B _.n n
(1) U‘n_a-B’Vn Q+B ’
where
S R R L Y T T
2 2
The first few values of w, v follow.
n 112} 34| 5 6 7 8 9 10 11 12
0|11 5 8 13| 21| 34 55 89 144
v 1| 3| 4] 74 11| 18] 29| 47| 76| 123 | 199| 322
It follows easily from the definition of (1) that
(2) W = W e Y T e g n=k=1) ,
(3) Vo T W e Ve T Yok ket m=k=1)

(4)
(5)
(6)

It is an'immediate consequence of (1) that
uklumk ’
Vie| Yomic

k| Vem-1)k
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where m and k are arbitrary positive integers. If is perhaps not sofamiliar

that, conversely,

(4)7 uklun == n = mk k>2) ,
(5" ukl u ==>n = 2mk k >1) ,
(6)’ vkl v, =—>n = 2m - Dk (k> 1)

These results can be proved rapidly by means of (1) and some simple re-

sults about algebraic numbers. If we put
(7) n=mk+r 0=r <k ,

then
so that

If uk’ w it therefore follows that u Bmkur. Since B is a unit of the field

R(N5), uklur, which requires r = 0. This proves (4)'.

Similarly if

n==2mk+r (0=r <2k) ,

then

2mk
Uy = @Yt A Uy

Hence if v lu, it follows that V| Uy If then r > 0 we must have r > k
and the identity
r-k
o - B)ur =a V- ’Bvr—k

gives Vie | ek which is impossible., The proof of (6)! is similar,
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If we prefer, we can prove (4)', (5)', (6)' without reference to algebraic
numbers, For example if ukl W then (2) implies W | Wy g1 Since u
and u,_q are relatively prime we have Wl e Continuing in this way we
get | s where r is defined by (7). The proof is now completed as above,
In the same way we can prove (5)' and (6)'.

In view of the relation
(8) u,_ = uv
it is natural to ask for the general solution of the equation
9) w, = U Ve (m>2,k>1) .

It is easily verified, using (1), that (9) can be replaced by

- k =
(10) W= upe (-1) Uk (m = k)
or
1) w o= u ., - (1% & >m)
n m+k k-m
Now the equation
12) u, = ug+tu (s>t >1)

is satisfied only when r - 1 = s = t+ 1. Indeedif 1 <t < s -1, then

us+u<u +u = u

t s s-1 s+1 ’

so that (12) is impossible; if t = s - 1, then clearly r =s+1.  t=1 in
(12) we have the additional solution r = 4, s = 3.

Returning to (10) and (11) we first dispose of the case m - k = 1. For
k even (10) will be satisfied only if m + k = 3, which implies k = 1; for k
odd we get n =2, m+k =3 or n=3, m+ k = 4, whichis impossible.

Equation (11) with k - m = 1 is disposed of in the same way.
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We may therefore assume in (10) and (11) that Im—k' > 1, Then if k is
even, it is evident from the remark concerning (12) that (10) is impossible, If
k is odd, we have

u u + u

m+k ~ 'n m-k °*
sothat k= 1, m = n, As for (11), if m is odd we get

. = u + 1
n m+k k-m °?

which is impossible, However, if m is even, we get

u = u_ +u

m%k n k-m °

sothat m + k =n+ 1 = k - m + 2; this requires m = 1, k = n,
This completes the proof of
Theorem 1, The equation-.

u = u.v

n inVk (m>2, k >1)

has only the solutions n = 2m = 2k,
The last part of the above proof suggests consideration of the equation
(13) u = k >1) .

Since (13) is equivalent to

it follows at once that the only solution of (13)is n = 4, k = 2,

The equation
(14) W, =V m=k>1),

is equivalent to

il

(15) u \% k‘+ (—1)kv

‘ n m+ m-k

If k is evenitis clear that n > m+k; indeed since Vinik = Uttt T Ymeke1

we must have n > m + k + 1. Then (15) implies
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u v

mtk+2 = mik+l * Yrntk-1 + m-k ?

which simplifies to

(16) Ymtk-2 = Vm-k

If m =k, (16) holds onlywhen m = 2; however this does notlead to asolution

of (14). ¥ m > k, (16) may be written as

u u

m+k-2 = Ymolke1 * m-k-1 < Y%m-k °*

which holds only when m = 4, k = 2,
If k is odd, (15) becomes

an ’ woF V=Y

If m = k this reduces to

n = Ugirr T Yo o

which implies 2k-1 =3, k=2, If m = k+ 1 (17) gives

n = Uopyg T Ugg o

which is clearly impossible, For m > k+ 1 we get

Ukl um%k—l = Uy F zum—-k :

sothat n< m+ k+ 1. Since

u + 2u < u

m-k mtktl T Ymetk-1 .

we must have n = m+ k+ 1. Hence (17) becomes

Ym-k = Ymik-1
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as we have seen above, this implies
m-k=2 m+k-1=4 ,

so that we do not get a solution,
We may state
Theorem 2, The equation

= vV (m=k >1)

k
has the unique solution n = 8, m = 4, k = 2,

It is clear from (4)' that the equation
(18) wo= cu k >2),

where c is a fixed integer >1 is solvable only when k|n. Moreover the num-
ber of solutions is finife, Indeed (18) implies
. = Uy =WV, € = Vo

moreover if n = rk then for fixed k, r is uniquely determined by (18).
This observation suggests two questions: For what values of ¢ is (18)
solvable and, secondly, can the number of solutions exceed one? In connection

with the first question consider the equation

(19) o= 2uk k > 2)
Since for n > 3
Zun_2 < wo= 211][1 9 + W s < 2un_1 ’
we get
U2 < Uge < Upp -

which is clearly impossible, Similarly, since for n > 4
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3u <u, = 3un_ + 2un_ < 3u
it follows that the equation
(20) u, = Suk k > 2)

has no solution,

Let us consider the equation

(21) wo=uou (m=k> 2)

We take

= u u_ + u u
n n-m+l m n-m m-1 °*°

so that

u . < u < u u
n-m+l m n n-m+2 m °?

provided n > m, Then clearly (21) is impossible,
For the equation

(22) vy = WV (m>2,k >1) ,
we use

Yn T umvn-m+1 + Ym-1Vn-m °
Then

u_v < V. < u_v
m n-m+l1 n m n-m+2 °?

so that (22) is impossible.
This proves
Theorem 3, Each of the equations (21), (22) possesses no solutions,



22 A NOTE ON FIBONACCI NUMBERS [ Feb.

Consider next the equation

(23) Vo = ViVk m=k >1) .
This is equivalent to
(24) V.=V + (—l)kv

n m+k m-k

For k even, (24) is obviously impossible. For k odd we may write

A =V _ +V
m+k n m-k °*

which requires m+k=n+1=m-k+ 2, sothat k = 1, This proves
Theorem 4. The equation (23) possesses no solutions,

The remaining type of equation is

(25) Vo= upu m=k >2)

This is equivalent to

k
(26) Y = Vit D Vo

Clearly n < m+ k., Then since

v = 5 + 3v

m+k Vintk-4 m+k-5 °

(26) implies

_ k
(27) 5Vn - 5Vm+k—4 * 3Vnr1+k—5 + (1) Vm-k

Consequently n = m + k - 3, while the right member of (27) is less than

av + 4v < bv

m+k-4 m+k-5 m+k-3

This evidently proves
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Theorem 5. The equation (25) possesses no sollitioh.

Next we discuss the equations

2 2 _ 42 <
(28) u ot unk— ue (0 <m =n) |,
(29) Vni+Vé=Vﬁ (0 =m =n)

We shall require the following

Lemma. The following inequalities hold.

u
n+1 3

(30) o = B = 2) ,
n
n+1 3

(31) v B n = 3)

for n = 2, we have

The proof of (31) is exactly the same.
Returning to (28) it is evident that

2

u 2
n

2
< uk < :Zu]{l .
so that

Y < Yk < U‘n"’f2

Then k > n and by the lemma

3
We = W =g

Since N2 < 3/2, we have a contradiction. The same arg‘uinent applies to (29).

The lemma requires that n = 2 or 3 but there is of courseno difficulty about
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the excluded values, This proves

Theorem 6. Each of the equations (28), (29), possesses no solutions,

More generally, each of the equations

T
wotw o= (0 <m=n) ,
v +VII;=V£ (0=m=n) ,

where r = 2 has no solutions.

Remark. The impossibility of (29) can also be inferred rapidly from the
easily proved fact that no i is divisible by 5. Indeed since

of =g =1 (modnB) ,
it follows that
n+5 n+5 1, n n 1
Voes = @+ B =5 +8) =5V, (mod \5) ,

so that Vors Evm(mod'sfé). Moreover none of vy, vy, vs, v, is divisible by 5.

The mixed equation
(32) vn§+v]§ = uﬁ (0 =m =n)
has the obvious solution m = 2, n = 3, k = 5; the equation

2 2
(33) wo vy
has the solution m = 4, n= 3, k = 5,

Clearly (32) implies

v, < U

u K < vn\/—z

This inequality is not sufficiently sharp to show that (32) has no solutions al-

though it does suffice for the equation

r r T
+ =
Vm Vn Uk
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with r sufficiently large.

However (32) is equivalent to

(34) v, + (-1)™2

2m

+ v,

n, _ 1
nt D72 = 2

If m+n =1 (mod 2), this reduces to

Vom ~

{Voy - -1)%21

1 k
Von T 5 {Vek - 1) 2}

There is no loss in generality in assuming k = 5. Then since

Vok T Va4 T Vok-5 o

we get
_ 1 _ .k
Vom * Von = Vakea T 5 13Vges ~ 172 .
Since m < n and
1 k
5 1%Vops - 12} < Vo 5
we must have 2n = 2k - 4 and
=3 082 = 6y, . + 3v - (1¥2
Vom T gpes - 12 = 6V g 2%-8

It is therefore necessary that 2m = 2k - 6 and we get

5V2m

i

which simplifies to

Hence m = 2, k=5, n

Next if m = n (mod 2)

6v

+ 3v +

2m-1 2m-2

A%

,» (3

2m-4

= (-1)™2

4) reduces to

-n-z ,

3 (a solution of (22)).

25
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n, _ 1 _ .k
Vo T Vo + (F1) 4 = 5{V2k (-1~ 2}

and as above we get

m , _ 1 K
(35) v Vot -1y 4 = Voka T 5 {3V2k_5 (-1~ 2} .

2m

It is necessary that 2n = 2k - 4, so that (35) reduces to

_ k
(36) 5V2m + (1) 20 = 3V2k—5 - (-1)" 2

Clearly 2m =2k -6, If 2m < 2k - 6 we get

m

- 1)¥2 = sy + (-1)t20

ok-5 2k-7

or

+ 2v = ()20 + (12

v 2k-8

2k-6

which is not possible. Thus 2m = 2k - 6 and (36) becomes

sv. + (-1)™20 = 3v 2

2m om+1 T D)

This reduces to

which is satisfied by m = 5. Then k = 8, n = 6 but this does not lead to a
solution of (32).
This completes the proof of

Theorem 7. The equation
Vni+v§ = uﬁ (0 =m = n)

has the unique solution m = 2, n = 3, k = 5,

The equation
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2 2 —
37) wet v, = (m > 0)

g

can be treated in a less tedious manner. Suppose first that vy S U Then (37)

implies
w? < u? < 2u?
m k m

and as we have seen above this is impossible. Next let U <V If k>n+2
then

2 = ;2 _ 2 - 2 2
U = Y3 (2un+1 * un) 2(un+1 * un—l) * 2un+1 * 2un+1un—2
+u? - u? > 2v?
n n-1 n

so that (37) is certainly not satisfied. Since k > n + 1 it follows that k = n + 2.
Thus (37) becomes

_ 2 2
= n—l)

2 - v2 = 2
(38) u a2~ Vo 3(un u

as is easily verified. If m > n+ 2 then

2 = @2

u
m n+2

= (2u_ + u
n

2 2 _ 42
n—l) > 3(un un—l) ’

contradicting (38). Since for n > 3

9
2 _ g2 _y? = 2 _ g2 242 - gy
3(u1rl un_l) us 2un Sun_1 > Uy 3un_1 > 0

it follows that m > n. Thus m = n+ 1 and (38) becomes

2 - 2 _ g2
Uner 7 3(un un—l)

This implies w ot 4= 3, n =3, which leads to the solution n = 3, m = 4,

-1
k = 5 of (37). As for the excluded values n = 1, 2 it is obvious that they do
not furnish a solution. This proves

Theorem 8. The equation
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has the unique solution m = 4, n = 3, k = 5.
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