A PRIMER FOR THE FIBONAGCI NUMBERS — PART V
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San Jose State College, San Jose, California

CORRECTION

Read the last displayed equation, on page 67 of Part 1V, as

F A _ \ 2n+1
Tan {Tan"1 D gt N5 -1 1} = (-1t <“f—52“1>

Fn+ 1 2

1. INTRODUCTION

In Section 8 of Part IV, we discussed an alternating series. This time
we shall lay down some brief foundations of sequences and infinite series. This
leads to some very interesting results in this issue and to the broad topic of
generating functions in the next issue and to continued fractions in the issue

after that. Many Fibonacci numbers shall appear.
2, SEQUENCES

Definition: An ordered set of numbers a;,a,,as, - ,an; -+ is called an

infinite sequence of numbers. If there arebut a finite number of the a's, a,a,,

LN then it is a finite sequence of nun;bers. »

A sequence of real numbers {an}n:1 is said to have a real number, a,
as a limit (written 1111_13100 a, = a) if for every positive real number €, |an - aj <
€ for all but a finite number of the members of the sequence {an}. If the se-
quence {an} has a limit, this limit is unique and the sequence is said to con-
verge to this limit. If the sequence {an} fails to approach a limit, then the

sequence is said to diverge. We now give examples of each kind.

_ _ . lim _
fa =1, {an} = 1,1,1,--- converges since __a = I
If a = 1/n, {an} = 1,1/2,1/3,---,1/n,--- converges to zero.
Ifa = 1", {an} = 1,-1,+1,-1,+1,--- diverges by oscillation. That

is, it does not approach any limit.
If a = n, {an} = 1,2,3,--- diverges to plus infinity.
59
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1 2
then {an} =gt

Some limit theorems for sequences are the following:

Finally if a = n%—l’ converges to one,

If {a } and {b_ } are two sequences of real numbers withlimits a and

b, respectively, then

lim _

rlxi@w(a -b )= a-b
n n

Il

lim
n— (c an) ca, any real c

lim
n—~% a_ b_ = ab
n n

lim _
ne (an/bn) = a/b, b+ 0

3. BOUNDED MONOTONE SEQUENCES

The sequence {an} is said to be bounded if there exists a positive num-
ber, K, such that N <K forall n=1, I a1 = 2o for n =1, the

sequence {an} is said to be a monotone increasing sequence; if 2, 2an+1

for n =1, the sequence is monotone decreasing sequence. If a sequence is

such that it is either monotone increasing or monotone decreasing it will be

called a monotone sequence.
The following useful and important theorem is stated without proof:

Theorem 1: A bounded monotone sequence converges.
n . .
As an example, consider the sequence {(1+ 1/n) }, this sequence is

monotone increasing and bounded above by 3. The limit of this sequence is

well known, We will use Theorem 1 in the material to come,

4, ANOTHER IMPORTANT THEOREM

The following sufficient conditions for the convergence of an alternating

series are given below.

Theorem 2: If, for the sequence {sn },

1. 8§, >0,
2. (8 s -1 > (8

n+1 -
01~ 5o 0 Spe )Y > 0, for n =2,
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lim
3. (Sm - Sn+1) = 0,

n o«

then the sequence {Sn} converges to a limit, S, suchthat 0 < S < 8,.

5. AN EXAMPLE OF AN APPLICATION OF THEOREM 2

For the following example a limit is known to exist by the application of
Theorem 2 of Section 4.

Let ?ln = Fn / Fn+1, where {Fn} is the Filbonacci sequence, then Sn_
-8, = (1" /(F F mm

By Theorem 2 above, S exists,
n n— o n

1

n+l1 )-
To find the limit, consider

which in terms of {8 } is 1/8_ =1+8_ ..
n n n-1
to infinity be S, then nlgncosn =n1H*nooSn~l =S > 0. Applying the limit

Let the limit of Sn as n tends

theorems of Section 2, it follows that S satisfies

- 1 2 -
S—1+SorS+S—1——O

Thus 8 > 0 is given by

N5 -1
2

s =

the positive root of the quadratic equation S + 8 - 1 = 90,

6. INFINITE SERIES

If we add together the members of a sequence {an }, we get the infinite

series a;+ag+--- +a +... ., Wenow get another sequence from this in-
finite series, 1
Define a sequence {Sn} in the following way. Let 8; =a;= Z a5, Sy
2 n i=1
=a;+ta = X a, - oringeneral S =a;+a,+t---ta = X a. This is

. n
i=1 i=1
called the sequence of partial sums of the infinite series. The infinite series
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can also be denoted by
A=a1+az+33+"’+an+'“ =Zai

If the sequence { S,} converges to a limit, S, then the infinite series,

A, 1is said to converge and converge to the limit S; otherwise series A is

said to diverge.

7. SPECIAL RESULTS CONCERNING SERIES

1. If an infinite series A = a;+as+--- + a,+ -+ converges, then
lim s s . R
n—ea_ = 0, This is immediate since a_ =85 -8 .
n n n n-1
2. From Section 3 above, an infinite series of positive terms converges
if the partial sums are bounded above since the partial sums form a monotone
increasing sequence,

3. For the alternating series

=a ,n =1; hma =0

o]

n+1 > 1.
Z (-1) a, such that a > 0, n =1; 2041 0’ N
n=1

then by Section 4, above, the infinite series converges; in the theorem

n
S = Z(-l)J a, .
n j
=1

An example of an alternating series was seen in Part IV, Section 8, of

this Primer.

8. FIBONACCI NUMBERS, LUCAS NUMBERS AND 1
It is well known and easily verified that
I

4

Also one can verify

-11 _ -11 -
I—Tan 2+Tan

1

_ 1
= Tan 3
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L g 11 11
i Tan} 1 Tan 2+Tan 5+Tan 8
or
o _ -11 -11 -1 1 -11
i Tan 3TTan 5+Tan 7+Tan 3

We note Fibonacci and Lucas numbers here, surely. We shall here easily ex-
tend these results in several ways. ' '
In this section we shall use several new identities which areleft as exer-
cises for the reader and will be marked with an asterisk.
*Lemma 1: L, L -1 = 5F? This is really a special case ofa

2n 2n+2 2n+1°
generalization of B-22, p. 76, Oct., 1963, Fibonacci Quarterly.

. 2 = _1)2
Lemma 2: Ln LG + 2(-1)
Lemma 3: L2 - 5F2 = 4(-1)"
—_— n n
n
* . = -
Lemma 4: Ln Lm_1 L2n+1 + (-1)

We now discuss

Theorem 3: If tany = 1/Ln, then

11 11
Tan (¥, + ¢ y = 1/F or Tan - =Tan = ——
2n 2n+2 2n+1 F2n+1 L2n
+ Tan" L T 1
2n+2 -
Proof:
Tan'(p. + 4 ) = Lon " Lonig 1
2n - T2n+2 Lonlonta =1 Fonr
since
= - = 5 F2 :
Lopyg + Loy = 5Fgpyy and Lo Lopip -1 =5F000

by Lemma 1 above,

Theorem 4: If tan Gn =1 /Fn , then Tan (02n - 92n+2) = 1/F2n+1’

or



64 A PRIMER ON THE FIBONACCI SEQUENCE — PART V

Tan™! 7 L _ papt Fl - Tan™1 7 1
2n+1 2n 2n+2
Proof:
Tan (0, -0, ) = Fontz ~ Bon - 1
2n 2n+2 FZnF2n+2 +1 F2n+1
since
_ - 2
Fontg ~Fon = Fopq  80d Fy F F

onton+2 " Fopey = 1)

From Theorem 4,

M M
> Tan™! Fl = ? <Tan—1 FL - Tant Fl
— 2n+1 ~ 2n 2n+2
n=1 n=1
-l 1 -1
= Tan 7 Tan 7
2
Since 1M man~1 L -9 by continuity of Tan 'x at x
Moo F
. 2M+2
write

Theorem 5:

=1 2n+1

This is the celebrated result of D, H. Lehmer, Nov. 1936, American Mathe-

2n+1

2M+2

[Feb,

=0 we may

matical Monthly, p. 632, Problem 3801,

We note in passing that the partial sums

M
S = Z Tan™! = Tanl L - Tanl 1
M F F F
=1 2n+1 2

are all bounded above by Tan-ll =1I/4 and SM is monotone. Thus Theorem

1 can be applied. From Theorem 3,

M




1964 ] A PRIMER ON THE FIBONACCI SEQUENCE — PART V 65

so that

1
F2n+1

M
Tan + Tanﬁl —]3l = Zz Tan ' <1 4 Tan’!

=

=}
il
-
7
et

The limit on the left tends to Tan 11 + Tan—ll/ 3 = Tan 12 and the right-hand
side tends to this same limit and since Tan 1 /L2M+2 —0, then

Theorem 6:

© —_

Z Tan ! X = Tan™! V5 - 1 = Lol

L 2 2
2n
n=1

Compare with Theorem 5 in Part IV,

We shall continue this interesting discussion in the next issue.

CORRECTIONS FOR VOLUME 1, NO. 2

Page 45: In the tenth line up from the bottom, the subscripts on the Fibonacci

numbers should be reversed.
Page 47: Replace ""Lamda" by "Lambda' in the title,

Page 52: Inline 6, replace (Rn) with )\(Rn).
In line 12, the author's name is Jekuthiel Ginsburg.

Page 55: In problem H-18, part a, replace = by =

a b : a b
Page 57: In E2, replace 3°d with (a,a-) .

Page 58: Add three dots after the 4 on the last line,

Page 60: The title "Letters to the Editor' was omitted from Fibonacci Formu-
las, and, in that article, the ""Correct Formula' due to the late Jekuthiel
. . 3 _
Ginsburg is F%+2 -3F) + F 5, = 3Fg, .



