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THE EUCLIDEAN ALGORITHM I
1. INTRODUCTION

Consider the problem of finding the greatest common divisor of 34and 144,
The factorizations 34 =2 - 17, 144 = 2%. 32 make this atrivial problem. How-
ever, this approach is discouraging when one deals with, say, "long" Fibonacci
numbers. Fortunately in Prop. 2 of Book VII, Euclid gave an elegant algorithm,

As usual, we shall designate the g.c.d. of s and t by (s,t).
2. THE ALGORITHM

The algorithm may be defined by the following flow chart, A —B means
A replaces B, i.e., set B = the current value of A,

M represents the remainder in the division of K by L.
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Flow Chart for Computing the G. C. D of Positive Integers I and J
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For I =13 and J = 8, the successive values of K, L, and M are:
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The last value of L is the desired g.c.d. In the following computation, (10946,

2584) = the last non-zero remainder.
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In this discussion we shall emphasize computational considerations.
There are, however, numerous "theoretical' applications of the Euclidean Al-
gorithm. As LeVeque [1] expresses it, "...it is the cornerstone of multipli-

cative number theory.' For a related theorem see Glenn Michael [2], this

issue.

3. A FORTRAN PROGRAM

With an occasional glance at our flow chart, it is easy to decipher the fol-
lowing Fortran program, (Fortran is a problem-oriented language commonly
used in conversing with electronic digital computers. )

(i) A =B means A is replaced by B.

(ii) The READ and PUNCH statements refer to card input/output,

(iii) In this context, N = K/L is an instruction to set N equal to [K/L] ,
i.e., the greatest integer not exceeding K/L (sometimes called an integer or
fixed point quotient), Thus if K = 13 and L = 3, N will equal 4. '

(iv) The symbol for multiplication is an asterisk,
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(v) A "conditional transfer' is achieved by using an IF statement: if M
= 0, go to statement 3 for the next instruction; otherwise go to statement 4,

(vi) The FORMAT and END statements are technical requirements (which
may be ignored).

READ 10, I, J
10 FORMAT (315)

K =1
L=4d
2N = K/L

M=K-LxN
IF (M) 3, 3, 4
4K = L
L =M
GO TO 2
3 PUNCH 10, I, J, L
END

4. Length of the Algoﬁthm

A natural question arises: What is the '"length" of this algorithm? I e.,
if s and t are given, how many divisions are required to compute (s,t) via
the Euclidean Algorithm?

Let us designate this number by N(s,t). For convenience we may assume
s =t. Thus for n > 1, N{n+ 1,n) = 2; the first division yields the remainder
1, whereas the second results in a zero remainder — signifying termination of
the algorithm. (As a byproduct we see that any two consecutive integers are
relatively prime. )

In Part II we shall see how Fibonacci numbers (F, = F, =1, Fi+1 = Fi
+ Fi~1) were used by Lamé to establish a remarkable result, Additional prop-

erties of N({s,t) are suggested in the following exercises.
5, EXERCISES

E1l. Note that the Euclidean Algorithm applied to the positive integers s

and t may be described by the equations
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s = tg; + ry, 0=r; <s
t = 1qy + 1y, 0 =1y <1y
Ty = Tq + T, 0 =713 <1y

rn—z - rn—lqn+rn’ n n-1
Tner = Ty 10

Explain why we must reach a remainder (rn+l) which is zero in a finite num-
ber of steps. Hint: Look at the inequalities,

E2, In E1, show that (s,t) = r (the last non-zero remainder). Hint:
Use repeated applications of Problem 1.3 [3].

E3. (a) Verify that M = K- L * N is the remainder in the division rep-
resented by statement 2 (N = K/L) of the Fortran program.,

(b) Can the Fortran programbe used to compute (I,J) when I = J?

E4. Prove thatif n =3, then N(n,3) = 1, 2, or 3.

E5. Suppose that n > 5 is chosen at random, Find the probability that
N(@,5) > 2.

E6. Prove thatfor n > 3, N@m+ 3,n) = 2, 3, or 4.

E7. For what values of n is 3 = N(2n - 5,n) = 6?

E8. Express (Fn+1,

E9. Investigatethe following conjecture: If a SFK, then N(n,a) = K- 1.

Fn) as a function of n,

Can n be any positive integer?
E10. Investigate the following conjecture: Let F = 2 be any Fibonacci

number. Then max Nmn,F)=1+ max (n, F-1).
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