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INTRODUCTION 
An old conjecture about Fibonacci number s is that 0, 1 and 144 

a r e the only perfec t s q u a r e s . Recently the re appeared a r epo r t that 
computat ion had revea led that among the f i r s t mil l ion n u m b e r s in the 
sequence the re a r e no fur ther squa res [ 1 ] . This is not su rp r i s ing , 
a s I have managed to prove the t ru th of the conjecture , and this shor t 
note is wr i t ten by invitation of the edi tors to r epor t my proof. The 
or iginal proof will appear shor t ly in [ Z ] and the r e a d e r is r e f e r r e d 
the re for de ta i l s . However, the proof given there is fair ly long, and 
although the same method gives s imi la r r e su l t s for the Lucas num-
b e r s , I have recen t ly d iscovered a r a the r nea te r method, which s t a r t s 
with the Lucas n u m b e r s , and it is of this method that an account ap-
p e a r s below. It is hoped that the full proof together with i ts conse -
quences for Diophantine equations will appear la ter this yea r . I might 
add that the same method seems to work for m o r e genera l sequences 

2 4 
of i n t ege r s , thus enabling equations like y = Dx + 1 to be com-
pletely solved at least for ce r t a in values of D. Of course the F ib -
onacci case is s imply D = 5. 

PRELIMINARIES 
In the f i r s t p lace, in accordance with the p rac t i ce of the F ib -

onacci Quar te r ly , I h e r e use the symbols F and L to denote the 
n - th . Fibonacci and Lucas number respec t ive ly ; in o thsr pape r s I 
use the m o r e widely accepted, if l e ss logical, notation u and v 
[ 3 ] . Throughout the following n, m, k will denote in t ege r s , not 
n e c e s s a r i l y posi t ive, and r will denote a non-negat ive in teger . Also, 
whe reve r it o c c u r s , k will denote an even in teger , not divisible by 3. 
We shall then r equ i r e the following formulae , al l of which a r e 
e l emen ta ry 

(1) 2F , = F L + F L 
x ' m+n m—n -n~-m 
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(2) 2 L , = 5 F F + L L 
m + n m n m n 

(3) L 0 ' = L 2 + ( - I ) ™ " 1 2 
v 2m m 

(4) ( F - , L . ) = 2 

(5) ( F , L ) = 1 if 3>n 

(6) 2 L if a n d only if 3 m 
1 m . J ' 

(7) 3 L if a n d on ly if m = 2 ( m o d 4) 
' m J \ t 

(8) F _ n = ( ~ - D n - 1 F n 

(9) L = ( - l ) n L 
v ' - n v n 

(10) L k = 3 . ( m o d 4 ) if 2 ' |k , 3 ^ 

(11) L , 01 = - L (mod L. ) V. ' m + 2 k " " . . m . k 

<12> F a + 2 k = - F m ^ ° d Lk> 

(13) L
m + 1 2 ^ L

m ^ m ° d 8 ) 

T H E MAIN T H E O R E M S 
T h e o r e m 1. 

If L = x t h e n n = 1 o r 3 . n * 
P r o o f . 

If n i s e v e n , (3) g i v e s 

L = y 2 ± 2 / x 2 . 
n 7 

If 115 1 ( m o d 4) , t h e n L, =• 1, w h e r e a s if n & 1 w e c a n w r i t e n = 1 + 
r 2* 3 # k w h e r e k h a s the r e q u i r e d p r o p e r t i e s , a n d t h e n o b t a i n by (11) 

L =. - Li = - 1 (mod L, ) 

2 a n d so L n ^ x ^ s i n c e - l i s a n o n - r e s i d u e of L^. by (10) . F i n a l l y , 
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if 113 3 (mod 4) then n = 3 gives L, = 2 , whereas if n / 3, we 
wri te as before n = 3 + 2*3 -k and obtain 

L =. - L = - 4 (mod L ) n o j-^ 

and again L / x . & n 
This concludes the proof of Theorem 3. 

Theorem 2. 
2 If L = 2x , then n = 0 or ±6. n 

Proof. 
If n is odd and L is even, then by (6) n = ± 3 (mod 12) and 

so, using (13) and (9),. 

L = 4 (mod 8) n 

and so L ^ 2x . n 
Secondly, if n = 0 (mod 4), then n = 0 gives L = 2, whereas 

r if n ^ O , n = 2 * 3 »k and so 

2L = - 2L = ~ 4 (mod L, ) n 0 k' 

2 2 
whence 2L / y •, i . e . L ^ 2x 

n n 
2 Thirdly, if n = 6 (mod 8) then n = 6 gives L, -• 2 • 3 whereas 

if n / 6 , n = 6 4- 2*3 ' k where now 41 k, 3/fk and so 

2L = - 2Lx = - 36 (mod L, ) n o k 

and again, - 36 is a non- res idue of L, using (7) and (10). Thus 
as before L ^ / 2 x " . n 

Finally, if n =. 2 (mod 8), then by (9) L = L where now 
-n E 6 (mod 8) and so the only admiss ib le value is -n = 6, i. e, 11= -6 . 

This concludes the proof of Theorem 2, 
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Theorem 3. 
If F = x2, then n = 0,\±1, 2 or 12. 

Proof. 
If n = 1 (mod 4), then n. = 1 gives F, = 1, whereas if n / 1, 

r n = 1 + 2e 3 • k and so 

F = - F, = - 1 (mod L, ) n 1 k' 

whence F /• x . If n = 3 (mod 4), then by (8) F = F and -n = 1 
n " J -n n 

(mod 4) and as before we get only n = - 1 . If n is even, then by (1) 
2 

F = F L, and so, using (4) and (5) we obtain, if F =• x 
n i/2n i/2n 2 2 n 

either 3 In, F , = 2y , L = 2z . By Theorem 2, the lat-
' y2n y i/2n y 

ter is possible only for i/2n ='0, 6 or -6. The first two values also 
satisfy the former, while the last must be rejected since it does not. 
or 3iri, F , = y , L = z . By Theorem 1, the latter 

' Vi* V2n 

is possible only for i/2n = 1 or 3, and again the second value must 
be rejected. 

This concludes the proof of Theorem 3. 

Theorem 4. 

If F = 2xZ, then n = 0, ±3 or 6. n 

If n = 3 (mod 4), then n = 3 gives F~ = 2, whereas if n ^ 3, 
Proof. 

n = 3 + 2" 3 * k and so 

2F = - 2F a = -4 (mod L, ) n 3 k 

and so F 4 2x . If n= 1 (mod 4) then as before F = F and we n -n n 
get only n = - 3 . If n is even, then since F = F , L we B y

 z n i/2n y2n 
must have if F . = 2x 

/ 2 n 2 2 
either F = y , L, = 2z ; then by Theorems 2 and 3 we 

i/2n i/2n 
see that the only value which satisfies both of these is y2n - 0 

2 2 
or F = 2y , L = z ; then by Theorem 1, the second 

i/2n J i/2n 3 ' 
of these is satisfied only for' i/2n = 1 or 3. But the former of these 

does not satisfy the first equation. 
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This concludes the proof of the theo rem. 
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