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INTRODUCTION

An old conjecture about Fibonacci numbers is that 0, 1 and 144
are the only perfect squares. Recently there appeared a report that
computation had revealed that among the first million numbers in the
sequence there are no further squares [1]. This is not surprising,
as I have managed to prove the truth of the conjecture, and this short
note is written by invitation of the editors to report my proof. The
original proof will appear shortly in [2] and the reader is referred
there for details. However, the proof given there is fairly long, and
although the same method gives similar results for the Lucas num-
bers, I have recently discovereda ratherneater method, which starts
with the Lucas numbers, and it is of this method that an account ap-
pears below. It is hoped that the full proof together with its conse-
quences for Diophantine equations will appear later this year. I might
add that the same method seems to work for more general sequences
of integers, thus enabling equations like yz = Dx4 +1 to be com-
pletely solved at least for certain values of D. Of course the Fib-

onacci case is simply D = 5,

PRELIMINARIES
In the first place, in accordance with the practice of the Fib-
onacci Quarterly, I here use the symbols Fn and Ln to denote the
n-th. Fibonacci and Lucas number respectively; in othsr papers I
use the more widely accepted, if less logical, notation U and Vo
[3]. Throughout the following n, m, k will denote integers, not
necessarily positive, and r willdenoteanon-negativeinteger. Also,

whereveritoccurs, k willdenote aneven integer, not divisible by 3.

We shall then require the following formulae, all of which are
elementary

(1) 2F =F L +F L
m+n m-n—— M
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(2) 2L =5F F +L_L

m+tn m  n m n

_ L2 m-1
(3) L, =L +(-1) 2
(4) (FBm’ L”‘»m) =2
(5) (F,L)=1 if 3/
(6) 2|L_ if and only if 3|m
(N 3| L_ if and only if m= 2 (mod 4)
o _ n-1
(8) F_=(-D"F
n

(9) L =(-1'L,
(10) L, = 3 (mod 4) if 2|k, 3/x
(11) Lospx = - Ly, (mod L)
(12) Fm+2k“=‘ - Fm (mod Lk.)
(13) L= L, (mods8)

THE MAIN THEOREMS
Theorem 1.

1f Ln = XZ, then n =1 or 3.
Proof.
If n is even, (3) gives

L ='y2:1:2;/x;2
n

If n=1 (mod4), then Ll = 1, whereasif n#¥ 1 wecanwrite n=1 +

2-3%+k where k hasthe required properties, and then obtain by (11)

I.J = - I_J

n 1 = -1 (mod L)

and so Ln'/xa since -1 1is a non-residue of Ly by (10). Finally,
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if n=z3 (mod 4) then n =3 gives L3 = 22, whereas if n ¥ 3, we

write as before n=3 +2-3 -k and obtain

Ly=-Ly=-4 (mod L

and again Ln 7z xZ.

This concludes the proof of Theorem 1.

Theorem 2.

If Ln= ZXZ, then n=0 or =6,
Proof.

If n is odd and Ln is even, then by (6) n= + 3 (mod 12) and
so, using (13) and (9),

and so Ln Z sz.

Secondly, if n= 0 (mod 4), then n =0 gives Ln = 2, whereas

if n#Z0, n=2-3"-k and so

2L = - 2L, =-4 (mod L

n 0 k)

whence ZLn;’yZ , i.e. Ln 7—/2.X2

Thirdly, if n= 6 (mod8)then n = 6 gives Lé = 2'32 whereas
if n#6, n=6+2"3""k where now 4|k, 3/k and so

2L =z - 2L, = - 36 (mod L
n 6

i)
and again, - 36 is a non-residue of Lk using (7) and (10). Thus
as before L, Z 2x°.

Finally, if n =z 2 (mod 8), then by (9) L_n = Ln where now
-n = 6 (mod8)andsothe only admissible valueis -n =6, i.e. n = -6.

This concludes the proof of Theorem 2.
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Theorem 3.
I F_ = %%, then n=0,\=l, 2 or 12.

Proof.
If n=z1 (mod4), them n=1 gives Fl =1, whereas if n# 1,
n=1+23"k and so
FmE - Fl = -1 (mod Lk)

whence Fn;fxz. If n=3 (mod4), thenby (8) F~n: Fn and -n= 1

(mod 4) and as before we get only n= -1. If n is even, then by (1)
2

F = F L1 and so, using (4) and (5) we obtain, if F_= =x
n pn iom 2 2 n

either 3 tn, E =2y, L = 2z . By Theorem 2, the lat-

Siner Von Yn

ter is possible only for ln =0, © or -6. The first two values also

satisfy the former, while the last must be rejected since it does not.
or B*n, E = yz, L = ZZ. By Theorem 1, the latter
— Y21 Ye1

is possible only for 14n =1 or 3, and again the second value must
be rejected.

This concludes the proof of Theorem 3.

Theorem 4.

If Fn = sz, then n =0, #£3 or 6,
Proof.

If n=3 (mnod4), then n=3 gives F
n=3+23"k and so

3= 2, whereas if n ¥ 3,

ZF - 2F, = -4 (mod L

n 3

1)

and so Fn ¥ ZXZ. If n=1 (mod 4) then as before ]:"_n = Fn and we

get only -n: -3. Ifz n is even, then since Fn: Fl/zn Li/zn we
must have if F = 2x

LE) 2
either EL=7Y5 L n = 2z; then by Theorems 2 and 3 we
see that the only value which satisfies both of these is n = 0
or = Zyz, L = ZZ; then by Theorem 1, the second

1,0 i,n
of these is satisfied only for Y%n =1 or 3. But the former of these

does not satisfy the first equation.
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This concludes the proof of the theorem.
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EDITORIAL NOTE
Brother U. Alfred cheerfully acknowledges the priority of the
essential method, used in '""Lucas Squares'' in the last issue of the
Fibonacci Quarterly Journal, rest solely with J. H. E. Cohn. This
was written at the request of the Editor andthe unintentional omission

of due credit rest solely with the Editor.



