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where B(s,t) is given by (3.7), and ¢ and ¥ are the differential

operators
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ASSOCIATIVITY AND THE GOLDEN SECTION
H. W. GOULD

West Virginia University, Morgantown, West Virginia
E. T. Bell, A functional equation in arithmetic, Trans. Amer.
Math. Soc., 39{(1936), 341-344, gave a discussion of some matters
suggested by the functional equation of associativity
o(x, oy, z)) = ¢e(e(x ), z)
As a prelude, Bell noted the following theorem.
THEOREM 1. The only polynomial solutions of ¢(x, ¢(y, z))=el(e(x, y), 2)
in the domain of complex numbers are the unsymmetric solutions
o(x,v) = x, @(x,y) =y, and the symmetric solution
e(x,y) = a + b(x +y)+cxy,
in which a, b, ¢, are any constants such that b2 -b-ac=0.
It is amusing to note a special case. The operation defined by

x % = 1l +b(x+vy)+xy
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is associative only if b =
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