
FIBONACCI AND PASCAL 

WALTER W. HORNER 
Pittsburg, Pa. 

The purpose of this note is to point out a connection between the 

Fibonacci sequence and rows of Pascal's triangle. It is known that 
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Expanding by the binomial theorem and collecting terms we get 
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As for the Lucas sequence it is known that 
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Expanding as above and collecting terms and remembering that 2 

is also equal to r , j + |^J + (5) + (7) + ( 9 ) + ~ " ~ w e Set 
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Note the exchange of binomial coefficients in the two formulas. Nu-
merical examples: To find F? we look in row 7 of Pascal's Triangle 
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and find 
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S imi la r ly for the 7th 
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• 5 + 21 • 5 2 + 1 • 5 3 832 
+ 35 + 7 " 6 4 

Lucas number 

5 + 35 • 5 2 + 7 • 5 3 1856 
+ 21 + 1 " 64 
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