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In this paper, matrix methods are used to derive some new
fourth power Fibonacciidentities. We let S be the 5X5 matrix which
contains the first five rows of Pascal's triangle beneath and on its

secondary diagonal; that is,
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The right column elements of s™ = (Sij) are given by

4 ..
5-i _Li-1 .
Si5"<. >Fn Fn+1’ i=1,2, ..., 5.
i-1
Proof is by induction. Obviously, S has this form. Since
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by definition of matrix multiplication,

4
t15 - l:‘nJrl ’

4 3 B 3
ths = o T Fon T fFan o

4 3 2.2 _ 2 2 2
tgg = OF 4y TI2F F o H O F 0 = O Fopy T 28 F i T )

2 2

- 6F1'1+1Fn-l-2 ’

4 3 2.2 3

t45 - 4Fn+l * IZFnFn-I-l * 12FnFn-i-l * 4F1an+1
3 2 2 3 3
4Fn+1(Fn+l * 3Fn+1Fn * 3Frr}'l Fn * Fn) - 4FrH-an+2 ’
) 4 4

t55 - (Fn+Fn+1) B Fn+2

261



262 FOURTH POWER FIBONACCI IDENTITIES December

Since only the recursion relation of the Fibonacci sequence was
used above, we have almost immediatelya matrixidentity for general-

ized Fibonacci numbers. Let u be the nth member of the general-

ized Fibonacci sequence defined by u, =a, u,=b, and u =u_+u .
1 2 n+l n n-1
Let U= (aij) be the column matrix defined by
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By our earlier proof, we can write
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By the Cayley-Hamilton Theorem, S must satisfy the matrix

equation

(1) s™s® - 58t - 158 + 1582 455 -1) = 0

Consideration of Equation (1) leads us to the matrix equation

(1" U - 50U - 15T
n

n+b n+4 * 15Un +5U -0, =0

+3 +2 n+l n

where Un is defined as the matrix Sn_lU. Since the elements in the

first rows of the matrices of Equation (1') must also satisfy the re-

cursion relation of (1'), we have the identity
4 4 4 4 4 4
Upes ~ Uy T By 3 s s Su L, - uy)

Equation (1) can be rewritten as

(5-1° = 258%(s - 1)

It can easily be shown by induction that
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We plan to investigate
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Thus, equating elements inthe upper right corner of these matrices,
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Similarly, from Equations (3), (4), and (5), we obtain
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But, also from (2),
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so that we have the recursion relation

(6) A.
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By use of well-known Fibonacci identities, we can rewrite Equa-

tions (2") and (4') respectively to yield the following:
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Equating elements in the first row of the column matrices formed by
multiplying Equations (2) and (4) on the right by the matrix U, and

taking u, = 1, u, = 3, we can rewrite Equations (2') and (4') to yield

1
the identities

2
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for fourth powers of members of the Lucas sequence Ln

Returning to the recursion relation of Equation (6), we define
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By (6),
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n .
+1) - G(j)) = - - - =
25(G(+L) - GU)) = Ay - 4850 - 194, - 4A,,) + Ay=0

Thus, G(j+1) - G(j) = 0, sothat G(j) isa constant. Taking n =j = 0,
G(j) = -6, leadingto anidentity given by Zeitlinin [l] . If we redefine
G(j) by replacing the Fibonacci numbers by the corresponding Lucas
numbers, we find that G(j) = -150. Further, if we replace members
of the Fibonacci sequence by the corresponding generalized Fibonacci
number, we obtain G(j) = —6D2, where D 1is the characteristic of
the sequence,

2 2

D = uz-ul-uu

172

(See [2] and [ 3] for properties of the characteristic of Fibonacci-type

sequences. )

Finally, we derive another property of the characteristic of a

sequence. 5 It is vszfell—known that F2n+3 = 3F2n+1 - FZn-l and that
F2n+l = Fn+1 + Fn. Define
Gm) = F2, - 3F2 + Fo_|
Then,
G(n+l) + G(n) Fonis - 3F, ntF, 1 =0,
so that G(n) = (-1)"2. That is,
(-1)%2 = Fo, - 3F2+F.

For generalized Fibonacci numbers, it can be shown by induc-

tion that

n 2 2
0o 0 1 Uy ur1+1
n p—
R'U = 0o 1 2 Zulu2 2un+1un+2
1 1 1 2 2
2 Ynt2

The 3X3 matrix R given above has been discussed in an earlier

article [4] . From the characteristic equation of R, we obtain
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121+3—2u2 -ZuZ -i-uZ = 0

e n+2 n+1 n

Rewriting and defining H{(n),

2 2 2 _ 2 2 2 _
H(n) = Ynt2 T 3un+1 * Uy T U3 Tt 3U’n-l-Z = - H(ntl)
Thus,
a n, 2 2 2, n,, 2 2 _ n+l
H(n) = (-1) (uz - 3u1 + uo) = (-1) Z(u2 -uy - uluz) = (-1) 2D ,
where D is the characteristic of the sequence. That is,
n 2 2 2
(-1)7"2D = Ui 3un +un__l
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