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1. INTRODUCTION

The purpose of this paperis to investigate the Diophantine equa-

tion
2 2

(1) flx,y) = x -xy-vy = A
In particular, we will prove the following [1]

Theorem. Equation (1) has a solution in relatively prime inte-
gers x and y if and only if

(i) A =5°A"#0, where e=0 or 1 and

(ii) if p is a prime factor of A', then
p = 1 or -1 (mod10).

An application to Fibonacci numbers may be found in [Z] .

2. TECHNIQUES
Our primary tool will be unimodular transformations

x = aX+ Y
{Y=YX+8Y

with determinant @ § - By =+ 1.
If we define the productof two transformations in the customary man-

ner, it is a straightforward procedure to verify that the set of all uni-

modular transformations forms a non-abelian group. We shall make
tacit use of this fact.

For convenience, let us designate the binary quadratic form

ax’ +bxy+cy2 by [a, b, c] .

Note that the discriminant b~ - 4ac is invariant under a unimodular

transformation (cf. analytic geometry: rotation of axes).
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First we observe that
(iii) if (a,y) =1, then f(a,y) ;( 0

since (a,y) =1 implies @ and y are bothoddor of opposite parity,

hence f(a,y) 1is odd;
(iv) £(1,0) =1,
(v) if f(a,y) = A, then i(y, -a)=- A.

Thus in the following discussion we may, whenever it is convenient,

assume A > 2.
3. THE PROOF: PARTII

Suppose the Diophantine equation (1) has a solution in relatively
prime integers a and y : f(a,y)= A, (a,y)=1. Since the g.c.d.
of any two integers a and y (not both zero) may be expressed as a
linear combination of @ and y , there exist integers B and § such
that ad - By = 1.

Applying the unimodular transformation whose coefficient ma-

trix is
a B
y &

to f(x,y)= [l, -1, —1] yields a new binaryquadratic form [A, B,C]
But the discriminants are invariant under this transformation; thus
B2 - 4AC = 5.

Putting it another way, f{a,y) = A,where (a,y) =1 implies

the congruence

(2) x% = 5 (mod 4A)
is solvable. However, this congruence has a solution if and only if
conditions (i) and (ii) are satisfied. For any x, x2 =0, 1, or 4 (mod
8). Therefore (2) has no solution if A is even. If A = 25A', x2 = 5
(mod 100), whence x = 5t, which leads to the contradiction 5‘c2 =1
(mod 5).

To complete this discussion, the reader should use the quadratic
reciprocity theorem (first proved by Gauss at the age of 18). In
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particular, we note that XZ = 5 (mod p) has a solution if and only if

xZ = p (mod 5) has a solution.
4. THE PROOF: PART II

To establish the sufficiency of conditions (i) and (ii), we will
show that there exist unimodular transformations Tl’ TZ’ cey Tk’
H, and L. such that

T, T, T,
[A1 Bp» C ] —> [8, By Cp] —> [As By G —>
T H L

k
> [Men B Cien] 7 [Arez Brozr G — [, -1,-1

where Al = A (cf. (1)), B, = B (a solution of the congruence (2)),

1
Ak+1 = x1 1is the first Ai numerically equal to unity, lBk+2l =1,
and the Ci are determined by the invariance of the discriminant.
If T is the product of these transformations,
T 7!
[a B, o ]— [1, -1, -1] or [1, -1, -1]—>[A, B C]

= F(X: Y)

Thus if the coefficient matrix of T_1 is

F(1,0) = A implies f(tl, t3) = A. I.e., the desired solution of (1) is
simply x = tl’ y =t Moreover, since T"1 is unimodular, tlt4 -

t3t2 = x1 forces (tl,t3) =1,

A Useful Lemma. Given any two integers B and A # 0, there

exists an integer n such that
|B +2nal Al .
Proof. If we define g = [lBI/Z IAI:] and r= [B|-2 |A |g,then the

following flow chart exhibits n. (As usual ''s—>t'' means ''replace
s by t'.)
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| -g-1l->n

—=>n

We may now define the (matrices of the) required transforma-

tions. Let

where n, satisfies the inequality

-B, +2n.A] $]A.]
1 1 1

2

Then it turns out that Bi+1 = - Bi + 2 niAi’ Ai+l . (Bi+l - 5)/4Ai' As

previously mentioned, A1 = A (given) and Bl = B (a solution of (2)).

Note that B must be odd; hence all the Bi are odd. Similarly, all
the Ai are odd.
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Choose

so that h satisfies

|B,,, +2h A < a

k+1 | k+1 I
Then Bk+2 = Bk+1 + 2h Ak+1' Note that Bk+27{ 0 (since Bk

k+1

+1 '°

odd); but A, ., =+ 1 (by definition), hence |B,,|= 1.
The reader may quickly establish the inequality
la | <lal/e i=1,2, . .%

Since the Ai can be shown to be odd, this establishes the existence of
Ay
Finally, L is chosen to be

(1 0) <1 0) <0 -1 0 1)
o 1/, \¢ -1/, \1 o, °"\1 o
according as the penultimate form is

o, -1, -1, [, 1, -1, [-1,1,1], or [-1, -1, 1],
respectively.

Thus we have established the existence of the transformations
T

T H, L and hence the desired solution of (1).

1 T T

5. REMARKS
We have, however, more than an existence proof. The proced-
ures developedin Part II of the proof constitute an efficient algorithm.
The algorithm was programmed in FORTRAN successfully. For
]A‘ < 4k, no more than k+2 unimodular transformaticns are required
to obtain a solution.
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