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Assume that (¢ + 1, n - 1, f) € A. Then B'is odd. Set E, gre1 = Eipq g + 1.
Since Et+1,B' >n - 1, we have ’ '

(3) Et,B'+l > N.
Consequently, 5
4) By gre1 > By oo

By the maximality of a, the minimality of B, and (4), we conclude that Eigre1 >0
(and, of course, Ey gr+1 = E¢,g'4+1). But '+ 1 is even, R is odd, and R’ + 1 < B.
Hence, we also have B'+1 < B. B'+1 < B and (3) contradict the minimality of B.
We conclude that (¢t + 1, n - 1, ) ¢ A.

We have shown that, in both Case b.l and Case b.2, statement (b) holds.

c. Suppose (t, n, f) ¢ A. If n =0, statement (c) is vacuous. So assume
n > 0. Observe that B is even and that B > 0. Lety = y(t, n, f). If y = 0, then
Eiiy+1 > 0. If y >0, then Y even and Eiy;,y > O imply that E¢ y+1 > O by Lemma
6.2. Thus, in either case, F¢ y4+; > 0. So y + 1 < o by the maximality of a, the
minimality of B, and the fact that o + 1 < B.

Now 0 < Ey y4; < E¢ q <m and Y even imply that

(5) n - f(t, n) > Etvr,y

by (a) of Lemma 6.1. Sincen <FE,g =FE, ; g.;+1,n-1<E,, g ,. Combine
this with (5) to get

Eipr,y S =-uUuEyy g Yu2lz<u<f(E, n).

Thus, B(t + 1, n - u, f) is odd Yu 2 1 < u < f(¢, n). We have shown that
F(t, n, f) C 4,

which verifies statement (c). Q.E.D.
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Horadam [2] defined and studied in detail the generalized Fibonacci sequence
defined by
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(1) H

with #, = p, H, = p + q, p and g being arbitrary integers. In a later article [3]
he defined Fibonacci and generalized Fibonacci quaternions as follows, and estab-
lished a few relations for these quaternions:

n = H, oy T H, (n > 2),

(2) B, =H, +H, 1, +H,,7, + H, 75,
and
(3) Q,=F, +F i, v+ F i, +F .14
where

-2 = .2 = .2 = - . . =_- . = .

1] 1, 13 1, 1,7, 1,1, Ty
and

Taly = =131y = 135 1373 = ~13%3 = 1y,

and {F,} is the Fibonacci sequence defined by
Fy=F,=1 and F, =F, ,+F,, (n>2).
He also defined the conjugate quaternion as

%) P, =H, = H 1%, = Hy 1,5y = H 4 3iss

n+1l n+2
and @, in a similar way. M.N. S. Swamy [5] obtained some additional relations for
these quaternions. '

In Section 1 of this paper we define the Fibonacci and generalized Fibonacci-
Cayley numbers. In Section 2, we obtain a further generalization of these numbers
as well as of the complex Fibonacci numbers and Fibonacci quaternions discussed in
[3] and [5].

SECTION 1
We call

(5) R, = F, + Fopyiy + 200 + Pty

and

(6) Sy =H, +H 11y + 0 +H 7,
where

ii = cee = i§ = -1, 2,2, = T, = =1,7,,
Gyiy = 9y = ~iyty, 141y = 4, = ~iyiy,

and six similar sets of six relations with 1, 2, 3 replaced by 1, 4, 5; 6, 2, 4;
6, 5, 3; 7, 2, 5; 7, 3, 4; and 1, 7, 6, respectively (see [1]), nth Fibonacci and
generalized Fibonacci-Cayley numbers, respectively. We define conjugate Cayley
numbers as

(7N S, = Hy = Hyy1iy = =+ = Huyqly,
and fn in a similar way, so that
7
S5, = B, = 2+ B, +ED, ¢ HE) b LED,,  HE.o b HD ¥ HD,]
=0 '

Pn—ﬁn + Pn+l+—Pn+H = 3[(227 - q)H2n+3 - (P2 - pq - qz)F2n+3]

+ 3[(2p - q)H2n+ll - (pz - pq - qz)FZn-i-ll]
(using Eq. 15 of [5])

~

(o]

N
]

30C2p - W,y + Hypy) - (P? - pg - q)(Fy,, s +Fyppr )]
S, + S, = 2H, implies
9) S22 = 20,5, - 8,8,

n n¥n*
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(]‘0) Hm+n+l = Fm+lHn+1 + FmHn = Fn+le+1 + FnHm
(see [2]), we have ’

Fo 1S,,, +ES8,

m+1Tn+1

(F Hypw t EH)) + o0+ (FrsrByyy + FpH, i 3)Ty
+ (Fm+1Hn+5 + Ean+u)iu R (Fm+1Hn+B + Ean+7)i7

m+1

= H iaer t Hpgoly ot H 6T,

=g s
so that e
(11) Spen+1 = Fne1Sper + E,S, = F, 18,1 + F,S,.
This implies
Sonsr = Fpe1Sue + F,S,
and
SZn = Fn+18% + E1Sn_1 = E1Sn+1 + Fn_lsn.

Again, since
(12) Hn+1 = an + pFn+1
(Eq. 7 of [2]), we have

Ho o Sper ¥ oSy = (@F, +PF )5, + (4F,_, + PF,)Sy
p(Fm+lsn+l + Fmsn) + q(FmSn-l + Fm—lsn)

= PSpin+1r T @Sm+n [by (11)].

Using (8) and (12) above and Eq. 17 of [5], we get
(14) 5,8, = 3[P%Fyp4s *+ 204F 2042 + @°F ppart PFons11 + 20qF 20410 + G F2nss]
3[p2(F2n+3 t Fopin1) T 20q(Fppy + Foping) + QZ(F2n+1 + Fonse)l.

Hence

9]
]

o1 = 3PP (Fopys + Fopyry + Foner ¥ Faneo)

+ 20q(Fppyp * Fopyro t Fop + Fonig)d

+ G2 (Fopsy * Fopuo * Fopyr + Fapy )]

3 Lopsa * Lons10) + 209 (Lops1 + Lopyg)

+ q*(Lyn + Lopig)]s

+ F,_,,, where {[,} is the Lucas sequence defined by
Ly=1,L,=3,L,=0L,,+L,, (>2).

From (9), (13), and (15), we have

SZ 4+ 8%, = 2(H,S, + Hy 15,.1) = (8,5, + S,_15,-1)

2(S,0-1 + GSyn-2) = 3IP*Lgnss + Donsro) + 20G(Lans1+ Lonss)

+q*(Ly, + Dyppe)]

(15)

since L, = F, _,

Analogous to Eq. 16 of [2], we have

(17) {25, , 15,4032 + 18,5,,33% = {25,,15,4, + S, }%.

Using (11), we can establish the identity analogous to Eq. 17 of [2]:
Sppe + (1) Sy

(18) S, =F,.y +Fiiq.

If p =1, g = 0, then we have the Fibonacci sequence {F,} and the correspond-
ing Cayley number R, for which we may write the following results: ‘
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(19) BuRy = RyRy = 3(F,, o + F,00)-
(20) Ran + Rn_an-l = 3(LZn-+-2 + L2n+10)'
21 RZ + R2., =2R,, 1 = 3ysp + Lypyqg)-

[Feb.

Similar results may be obtained for the Lucas numbers and the corresponding
Cayley numbers by letting p = 1 and ¢ = 2 in the various results derived above.

SECTION 2

A. The following facts about composition algebras over the field of real numbers
(the details of which can be found in [4]) are needed to obtain further generali-

zation of complex Fibonacci numbers, Fibonacci quaternionms,

numbers.

and Fibonacci-Cayley

1. The 2-dimensional algebra over the field R of real numbers with basis {1,

7,} and multiplication table

1 1,
1 1 1,
7, 7, -0

(o being any nonzero real number).

We denote this algebra by C(a). The conjugate of z = a; + a,2, isx = a; - a7

and 2% = Tx = a + aal.

0 171

2. The 4-dimensional algebra (over R) with basis {1, Tys Lys 23} and multi-

plication table

1 i, i, 1,
1 1 74 <, T4
i1 | 7 -a, T, -atz,
Ty | 22 -13 -B BZ,
Ty | 3 oz, -Bi, -aB

(o, B any nonzero real numbers).

We denote this algebra by C(a, B). The conjugate of x = ay + a1, + axis + azis
is T = ay - a2, - ayi, — azty and & = xx = aj + oa? + Ral + aBa?.

3. The 8-dimensional algebra (over R) with basis {1, Ty,

plication table

«ves 15} and multi-

i i, i, i, i i 4,
il -0 ia —@iz is —aiq —i7 ais
iy | ~%3 -B Bi1 i6 17 -B7,  -Bis
'1:3 Obiz _Bil —(XB 7:7 -aﬂ:s Bis —G,Biq
Do) ~ts o -te -tz -y Yoo iz vis
1s ATy -17 Qg -Y11 -y -Y13 YOT 2o
6 | L7 BLy  ~Bils -yl Yi3 -YB -YBZy
i7' —uis Bis aBik -Yig —Yaiz Ysil —GBY

(o, B, Y any nonzero real numbers).
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We Sgnote this'algebra by Q(a, B, 1). _Ihe conjugate of x = ay + ayZ; +--- + ay%,
is x = a, - a12; -+++ - a;i; and &% = xx = (af + oa? + Bai + aBa?) + y(a? + ca? +
BaZ + aBa3).

B. Next we shall consider the following generalizations of H,, F,, and L,, re-
spectively:

[]

hn: By =p, h, = bp + cq, h, = bn,_, + ch,_, n > 2)

fat fy =1, £y = by f, = Bf,_, +cf,, n > 2)

8pt L =Db, &, =Db* 4 20, 8, =D, , + Clp_y n > 2)
(b, ¢, p, q being integers).

Then we have the following various relations:

hn Pf; + qcf%—l
2" f;+1 + efn—l

ph,,., +eqh,, 5 = h, (ch,_, + hy)
(2p = bDhyyyy = efppirs

Chi + h§+1 = ph2n+l + cthn
where e = p? - bpg - cq®.
hohyer = czhn-Zhn—l = b(Phyp_1 + qChyy_ )
iy = €®hy ) = b(phy, + cqhy, 1) = b(2p - bQdh,, - bef,,
By 1hpsr = B = (-2)"e
FrorFner = i = (=0)"
. Pprg = Chy 1 Fy + B fryy =chy (f, + R, Fui
Bpes = (=) 4 0,y
i e¢fi-1 + Feer-

]

We now define the nth generalized complex Fibonacci number d, as the element
hn, + h,, %, of the algebra C(1/¢); the nth generalized Fibonacci quaternion p, as
the element Ak, + h, %, + h,ypT, + Hpe3y of the algebra C(l/e, 1); and the nth
generalized Fibonacci-Cayley number s, as the element h, + A, 2, + -++ + h, .2,
of the algebra C(l/ec, 1, 1).

The following is a list of relations for these numbers:

d,_,d,., -di=(-c)e + bi,)).

n-1"n+1l

- = 1
4,d, = d,d, = B2 + Zh?

n+l
1

= E(ph2n+1 + cqhzn) = %{(Zp - bq)h2n+1 - efon41l

= 2@ + 64" fp1+0q(20 - DD, ]-
d;&; + cdn-la.n—l ='§[(P2 + @qz)(f2n+1 + con_l) + qc(2p - bQ)(on + cfZH-Z)]
= é—[(p2 + aqz)ZZn + ge(2p - bq) Ry, 11

dm+n+1 = f;+1dn+l + Gf;dn = f2+1dm+1 + Of;dm.

Ppsr@par + Chady = Pdyinsy + qCdiype

d% + ed?_, = 2(pdan-1 + qedan-2) - é-[(p2 + ¢q?)8,,+ qe(2p - bq) 8y, 1.
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2 2 32 =
dn+1 -c dn-l -

dn+t - (‘c)t+ldn_t

dn
PE

n-n

ann + cpn-].?n—l

pm+n+1
hm+1pn+1 + ch,p,
2 2
p, tcpha
- ()t

pn+-b ( C) pn—t
b,

S, 8,

8,8, + e8, 18, .1

sm+n+1

hm+lsn+1 + Chmsn

2 2
8, + e84

t+1
Sp4t = (=0) * Sp.t
STL
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bz
-—?(Zp - bq)h2n+l +

efyir + Fevne

b2e

e]

[Feb.

Fonsr + 26(PRy, .0 + qch, )1, .

- = 1
dpdy + dyydyyy = zl@p - BQ) (hyp 1t Pyyys) = e(Fo i ¥ Fpnis)]

L@+ ea®) (Fapay * Fanes) + 040 = b)Y (£, + Frnp)]-

2[(p? + 2g®) (San

fm+1pn+1 + cfm pn

PPpin+1r T 9P, -

PPon-1 + qCPs,-»

fpor + Fians

pnpn + pn+’+pn+k«'
PP, * CPy-1Pn-1
fm+lsn+1 + cfmsn

p8m+n+l

PSon_1 + GC85,_ 5 = (8,8, + C8, 18,1
efiar + Fiens
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+

Q/2n+q) + Oq(zp - bq)('Q'Zn-l + ’Q’2n+3)]'

= fn+1pm+1 + cf;qpm'

(pnﬁn + cpn-lﬁn—l) .

PpsuPryn t CPry3Praz-

fn+lsm+1 + cfn3m°
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