Assume that $(t+1, n-1, f) \in A$. Then β' is odd. Set $\widetilde{E}_{t, \beta'+1} = E_{t+1, \beta'} + 1$. Since $E_{t+1,\beta}$, $\geq n-1$, we have

 $E_{t,\beta'+1} > n$.

Consequently,

$$\widetilde{E}_{t,\,\beta'+1} > E_{t,\,\alpha}.$$

By the maximality of α , the minimality of β , and (4), we conclude that $E_{t,\beta'+1}>0$ (and, of course, $E_{t,\beta'+1} = \tilde{E}_{t,\beta'+1}$). But $\beta'+1$ is even, β is odd, and $\beta'+1 \leq \beta$. Hence, we also have $\beta'+1 < \beta$. $\beta'+1 < \beta$ and (3) contradict the minimality of β . We conclude that $(t + 1, n - 1, f) \notin A$.

We have shown that, in both Case b.1 and Case b.2, statement (b) holds.

c. Suppose $(t, n, f) \notin A$. If n = 0, statement (c) is vacuous. So assume n > 0. Observe that β is even and that $\beta > 0$. Let $\gamma = \gamma(t, n, f)$. If $\gamma = 0$, then $E_{t,\,\gamma+1}>0$. If $\gamma>0$, then γ even and $E_{t+1,\,\gamma}>0$ imply that $E_{t,\,\gamma+1}>0$ by Lemma 6.2. Thus, in either case, $E_{t,\,\gamma+1}>0$. So $\gamma+1\leq\alpha$ by the maximality of α , the minimality of β , and the fact that $\alpha+1<\beta$.

Now $0 < E_{t,\gamma+1} \leq E_{t,\alpha} < n$ and γ even imply that

(5)
$$n - f(t, n) > E_{t+1, \gamma}$$

by (a) of Lemma 6.1. Since $n \leq E_{t,\beta} = E_{t+1,\beta-1} + 1$, $n-1 \leq E_{t+1,\beta-1}$. Combine this with (5) to get

$$E_{t+1, \gamma} < n - u \le E_{t+1, \beta-1} \ \forall \ u \ni 1 \le u \le f(t, n).$$

Thus, $\beta(t+1, n-u, f)$ is odd $\forall u \ni 1 \le u \le f(t, n)$. We have shown that

$$F(t, n, f) \subseteq A,$$

which verifies statement (c). Q.E.D.

REFERENCES

- 1. J. H. Conway. On Numbers and Games. London: Academic Press, 1976.
- 2. R. J. Epp & T. S. Ferguson. "A Note on Take-Away Games." The Fibonacci Quarterly 18. no. 4 (1980):300-304.
- 3. J. A. Flanigan. "Generalized Two-Pile Fibonacci Nim." The Fibonacci Quarterly 16, no. 5 (1978):459-69.
- 4. J. A. Flanigan. "An Analysis of Some Take-Away and Loopy Partizan Graph Games." Ph.D. Dissertation, U.C.L.A., 1979.
- 5. A. J. Schwenk. "Take-Away Games." The Fibonacci Quarterly 8, no. 3 (1970): 225-34.
- 6. D. L. Silverman. Your Move. New York: McGraw-Hill, 1971.
 7. M. J. Whinihan. "Fibonacci Nim." The Fibonacci Quarterly 1, no. 4 (1963):9-13.

FIBONACCI-CAYLEY NUMBERS

P. V. SATYANARAYANA MURTHY

S.K.B.R. College, Amalapuram-533 201, India (Submitted August 1980)

Horadam [2] defined and studied in detail the generalized Fibonacci sequence defined by

(1)
$$H_n = H_{n-1} + H_{n-2} \qquad (n > 2),$$

with $H_1 = p$, $H_2 = p + q$, p and q being arbitrary integers. In a later article [3] he defined Fibonacci and generalized Fibonacci quaternions as follows, and established a few relations for these quaternions:

(2)
$$P_n = H_n + H_{n+1}i_1 + H_{n+2}i_2 + H_{n+3}i_3,$$

and

(3)
$$Q_n = F_n + F_{n+1}i_1 + F_{n+2}i_2 + F_{n+3}i_3,$$

where

$$i_1^2 = i_2^2 = i_3^2 = -1$$
, $i_1 i_2 = -i_2 i_1 = i_3$,

and

$$i_2i_3 = -i_3i_2 = i_1$$
, $i_3i_1 = -i_1i_3 = i_2$,

and $\{F_n\}$ is the Fibonacci sequence defined by

$$F_1 = F_2 = 1$$
 and $F_n = F_{n-1} + F_{n-2}$ $(n > 2)$.

He also defined the conjugate quaternion as

(4)
$$\overline{P}_n = H_n - H_{n+1}i_1 - H_{n+2}i_2 - H_{n+3}i_3,$$

and \overline{Q}_n in a similar way. M.N.S. Swamy [5] obtained some additional relations for these quaternions.

In Section 1 of this paper we define the Fibonacci and generalized Fibonacci-Cayley numbers. In Section 2, we obtain a further generalization of these numbers as well as of the complex Fibonacci numbers and Fibonacci quaternions discussed in [3] and [5].

SECTION 1

We call

(5)
$$R_n = F_n + F_{n+1}i_1 + \cdots + F_{n+2}i_7$$

and

(6)
$$S_n = H_n + H_{n+1}i_1 + \cdots + H_{n+7}i_7,$$

where

numbers as

$$i_1^2 = \cdots = i_7^2 = -1$$
, $i_1 i_2 = i_3 = -i_2 i_1$,
 $i_2 i_3 = i_1 = -i_3 i_2$, $i_3 i_1 = i_2 = -i_1 i_3$,

and six similar sets of six relations with 1, 2, 3 replaced by 1, 4, 5; 6, 2, 4; 6, 5, 3; 7, 2, 5; 7, 3, 4; and 1, 7, 6, respectively (see [1]), nth Fibonacci and generalized Fibonacci-Cayley numbers, respectively. We define conjugate Cayley

(7)
$$\overline{S}_n = H_n - H_{n+1}i_1 - \cdots - H_{n+7}i_7,$$

and \overline{R}_n in a similar way, so that

(8) = 3[
$$(2p - q)(H_{2n+3} + H_{2n+11}) - (p^2 - pq - q^2)(F_{2n+3} + F_{2n+11})$$
].
 $S_n + \overline{S}_n = 2H_n \text{ implies}$

$$S_n^2 = 2H_n S_n - S_n \overline{S}_n.$$

Since

(10)
$$H_{m+n+1} = F_{m+1}H_{n+1} + F_mH_n = F_{n+1}H_{m+1} + F_nH_m$$

(see [2]), we have

$$\begin{split} F_{m+1}S_{n+1} + F_mS_n &= (F_{m+1}H_{n+1} + F_mH_n) + \cdots + (F_{m+1}H_{n+4} + F_mH_{n+3})i_3 \\ &+ (F_{m+1}H_{n+5} + F_mH_{n+4})i_4 + \cdots + (F_{m+1}H_{n+8} + F_mH_{n+7})i_7 \\ &= H_{m+n+1} + H_{m+n+2}i_1 + \cdots + H_{m+n+8}i_7 \\ &= S_{m+n+1}, \end{split}$$

so that

(11)
$$S_{m+n+1} = F_{m+1}S_{n+1} + F_mS_n = F_{n+1}S_{m+1} + F_nS_m.$$

This implies

$$S_{2n+1} = F_{n+1}S_{n+1} + F_nS_n$$

and

$$S_{2n} = F_{n+1}S_n + F_nS_{n-1} = F_nS_{n+1} + F_{n-1}S_n$$
.

Again, since

(12)
$$H_{n+1} = qF_n + pF_{n+1}$$

(Eq. 7 of [2]), we have

$$\begin{split} H_{m+1}S_{n+1} + H_{m}S_{n} &= (qF_{m} + pF_{m+1})S_{n+1} + (qF_{m-1} + pF_{m})S_{n} \\ &= p(F_{m+1}S_{n+1} + F_{m}S_{n}) + q(F_{m}S_{n-1} + F_{m-1}S_{n}) \\ &= pS_{m+n+1} + qS_{m+n} \text{ [by (11)].} \end{split}$$

Using (8) and (12) above and Eq. 17 of [5], we get

$$(14) S_n \overline{S}_n = 3[p^2 F_{2n+3} + 2pq F_{2n+2} + q^2 F_{2n+1} + p^2 F_{2n+11} + 2pq F_{2n+10} + q^2 F_{2n+9}]$$

$$= 3[p^2 (F_{2n+3} + F_{2n+11}) + 2pq (F_{2n+2} + F_{2n+10}) + q^2 (F_{2n+1} + F_{2n+9})].$$

Hence

$$S_{n}\overline{S}_{n} + S_{n-1}\overline{S}_{n-1} = 3[p^{2}(F_{2n+3} + F_{2n+11} + F_{2n+1} + F_{2n+9}) + 2pq(F_{2n+2} + F_{2n+10} + F_{2n} + F_{2n+8}) + q^{2}(F_{2n+1} + F_{2n+9} + F_{2n+1} + F_{2n+7})]$$

$$= 3[p^{2}(L_{2n+2} + L_{2n+10}) + 2pq(L_{2n+1} + L_{2n+9}) + q^{2}(L_{2n} + L_{2n+8})],$$

since L_n = F_{n-1} + F_{n+1} , where $\{L_n\}$ is the Lucas sequence defined by

$$L_1 = 1$$
, $L_2 = 3$, $L_n = L_{n-1} + L_{n-2}$ (n > 2).

From (9), (13), and (15), we have

$$\begin{split} S_n^2 + S_{n-1}^2 &= 2(H_n S_n + H_{n-1} S_{n-1}) - (S_n \overline{S}_n + S_{n-1} \overline{S}_{n-1}) \\ &= 2(p S_{2n-1} + q S_{2n-2}) - 3[p^2 (L_{2n+2} + L_{2n+10}) + 2pq (L_{2n+1} + L_{2n+9}) \\ &+ q^2 (L_{2n} + L_{2n+8})]. \end{split}$$

Analogous to Eq. 16 of [2], we have

$$\{2S_{n+1}S_{n+2}\}^2 + \{S_nS_{n+3}\}^2 = \{2S_{n+1}S_{n+2} + S_n\}^2.$$

Using (11), we can establish the identity analogous to Eq. 17 of [2]:

(18)
$$\frac{S_{n+t} + (-1) S_{n-t}}{S_n} = F_{t-1} + F_{t+1}.$$

If p = 1, q = 0, then we have the Fibonacci sequence $\{F_n\}$ and the corresponding Cayley number R_n for which we may write the following results:

(19)
$$R_n \overline{R}_n = \overline{R}_n R_n = 3(F_{2n+3} + F_{2n+11}).$$

(20)
$$R_{n}\overline{R}_{n} + R_{n-1}\overline{R}_{n-1} = 3(L_{2n+2} + L_{2n+10}).$$

(21)
$$R_n^2 + R_{n-1}^2 = 2R_{2n-1} - 3(L_{2n+2} + L_{2n+10}).$$

Similar results may be obtained for the Lucas numbers and the corresponding Cayley numbers by letting p=1 and q=2 in the various results derived above.

SECTION 2

A. The following facts about composition algebras over the field of real numbers (the details of which can be found in [4]) are needed to obtain further generalization of complex Fibonacci numbers, Fibonacci quaternions, and Fibonacci-Cayley numbers.

1. The 2-dimensional algebra over the field R of real numbers with basis {1, i_1 } and multiplication table

$$\begin{array}{c|cccc} & 1 & i_1 \\ \hline 1 & 1 & i_1 \\ i_1 & i_1 & -\alpha \end{array}$$

(α being any nonzero real number).

We denote this algebra by $C(\alpha)$. The conjugate of $x = a_0 + a_1 i_1$ is $\overline{x} = a_0 - a_1 i_1$ and $x\overline{x} = \overline{x}x = a_0^2 + \alpha a_1^2$.

2. The 4-dimensional algebra (over R) with basis $\{1,\;i_1,\;i_2,\;i_3\}$ and multiplication table

	1	i_1	i_2	i ₃
1	1	i_1	i_2	i_3
i_1	i_1	-α	i_3	$-\alpha i_2$
i_2	i_2	-i ₃	- β	βi_1
i_3	i_3	αi_2	$-\beta i_1$	-αβ

(α , β any nonzero real numbers).

We denote this algebra by $\mathcal{C}(\alpha, \beta)$. The conjugate of $x = \alpha_0 + \alpha_1 i_1 + \alpha_2 i_2 + \alpha_3 i_3$ is $\overline{x} = \alpha_0 - \alpha_1 i_1 - \alpha_2 i_2 - \alpha_3 i_3$ and $x\overline{x} = \overline{x}x = \alpha_0^2 + \alpha \alpha_1^2 + \beta \alpha_2^2 + \alpha \beta \alpha_3^2$.

3. The 8-dimensional algebra (over R) with basis $\{1,\,i_1,\,\ldots,\,i_7\}$ and multiplication table

	i_1	i_2	i ₃	i,	i_5	i_6	i,
i ₂ i ₃ i ₄ i ₅	-a -i3 ai2 -i5 ai4 i7	i ₃ -β -βi ₁ -i ₆ -i ₇ βi ₄	-αi ₂ βi ₁ -αβ -i ₇ αi ₆ -βi ₅	i5 i6 i7 -Y -Yi1 -Yi2	-αi ₄ i ₇ -αi ₆ γi ₁ -αγ γi ₃	-i ₇ -βi ₄ βi ₅ γi ₂ -γi ₃ -γβ	αί ₆ -βί ₅ -αβί ₄ γί ₃ γαί ₂ -γβί ₁
i_7	-αi ₆	βis	αβί,	-yi3	-γαi ₂	$\gamma \beta i_1$	-αβγ

(α , β , γ any nonzero real numbers).

We denote this algebra by $C(\alpha, \beta, \gamma)$. The conjugate of $x = a_0 + a_1i_1 + \cdots + a_7i_7$ is $\overline{x} = a_0 - a_1i_1 - \cdots - a_7i_7$ and $x\overline{x} = \overline{x}x = (a_0^2 + \alpha a_1^2 + \beta a_2^2 + \alpha \beta a_3^2) + \gamma(a_4^2 + \alpha a_5^2 + \beta a_6^2 + \alpha \beta a_7^2)$.

B. Next we shall consider the following generalizations of H_n , F_n , and L_n , respectively:

$$h_n$$
: $h_1 = p$, $h_2 = bp + cq$, $h_n = bh_{n-1} + ch_{n-2}$ $(n > 2)$
 f_n : $f_1 = 1$, $f_2 = b$, $f_n = bf_{n-1} + cf_{n-2}$ $(n > 2)$
 ℓ_n : $\ell_1 = b$, $\ell_2 = b^2 + 2c$, $\ell_n = b\ell_{n-1} + c\ell_{n-2}$ $(n > 2)$

(b, c, p, q being integers).

Then we have the following various relations:

$$\begin{split} h_n &= pf_n + qef_{n-1} \\ \mathcal{L}_n &= f_{n+1} + ef_{n-1} \\ ph_{2n-2} + eqh_{2n-3} &= h_{n-1}(eh_{n-2} + h_n) \\ eh_n^2 + h_{n+1}^2 &= ph_{2n+1} + eqh_{2n} = (2p - bq)h_{2n+1} - ef_{2n+1}, \end{split}$$
 where $e = p^2 - bpq - eq^2$.
$$h_n h_{n+1} - e^2 h_{n-2} h_{n-1} &= b(ph_{2n-1} + qeh_{2n-2}) \\ h_{n+1}^2 - e^2 h_{n-1}^2 &= b(ph_{2n} + eqh_{2n-1}) &= b(2p - bq)h_{2n} - bef_{2n} \\ h_{n-1} h_{n+1} - h_n^2 &= (-e)^n e \\ f_{n-1} f_{n+1} - f_n^2 &= (-e)^n \\ h_{n+t} &= eh_{n-1} f_t + h_n f_{t+1} = eh_{t-1} f_n + h_t f_{n+1} \\ \frac{h_{n+t} - (-e)^{t+1} h_{n-t}}{h_n} &= ef_{t-1} + f_{t+1}. \end{split}$$

We now define the nth generalized complex Fibonacci number d_n as the element $h_n+h_{n+1}i_1$ of the algebra C(1/c); the nth generalized Fibonacci quaternion p_n as the element $h_n+h_{n+1}i_1+h_{n+2}i_2+h_{n+3}i_3$ of the algebra C(1/c,1); and the nth generalized Fibonacci-Cayley number s_n as the element $h_n+h_{n+1}i_1+\cdots+h_{n+7}i_7$ of the algebra C(1/c,1,1).

The following is a list of relations for these numbers:

$$\begin{split} d_{n-1}d_{n+1} - d_n^2 &= (-c)^n e(2+bi_1)\,,\\ d_n\overline{d}_n &= \overline{d}_nd_n = h_n^2 + \frac{1}{c}h_{n+1}^2\\ &= \frac{1}{c}(ph_{2n+1} + cqh_{2n}) = \frac{1}{c}[(2p-bq)h_{2n+1} - ef_{2n+1}]\\ &= \frac{1}{c}[(p^2+cq^2)f_{2n+1} + cq(2p-bq)f_{2n}]\,,\\ d_n\overline{d}_n + cd_{n-1}\overline{d}_{n-1} &= \frac{1}{c}[(p^2+cq^2)(f_{2n+1} + cf_{2n-1}) + qe(2p-bq)(f_{2n} + cf_{2n-2})]\\ &= \frac{1}{c}[(p^2+cq^2)\ell_{2n} + qe(2p-bq)\ell_{2n-1}]\,,\\ d_{m+n+1} &= f_{m+1}d_{n+1} + cf_md_n = f_{n+1}d_{m+1} + ef_nd_m\,,\\ h_{m+1}d_{n+1} + ch_md_n &= pd_{m+n+1} + qcd_{m+n}\,,\\ d_n^2 + cd_{n-1}^2 &= 2(pd_{2n-1} + qcd_{2n-2}) - \frac{1}{c}[(p^2+cq^2)\ell_{2n} + qe(2p-bq)\ell_{2n-1}]\,. \end{split}$$

$$\begin{split} d_{n+1}^2 - c^2 d_{n-1}^2 &= -\frac{b^2}{c} (2p - bq) h_{2n+1} + \frac{b^2 e}{c} \, f_{2n+1} + 2b (p h_{2n+1} + q c h_{2n}) i_1. \\ \frac{d_{n+t} - (-c)^{t+1} d_{n-t}}{dn} &= c f_{t-1} + f_{t+1}. \\ p_n \overline{p}_n &= d_n \overline{d}_n + d_{n+2} \overline{d}_{n+2} &= \frac{1}{c} [(2p - bq) (h_{2n+1} + h_{2n+5}) - e (f_{2n+1} + f_{2n+5})] \\ &= \frac{1}{c} [(p^2 + cq^2) (f_{2n+1} + f_{2n+5}) + cq (2p - bq) (f_{2n} + f_{2n+4})]. \\ p_n \overline{p}_n &+ cp_{n-1} \overline{p}_{n-1} &= \frac{1}{c} [(p^2 + cq^2) (\ell_{2n} + \ell_{2n+4}) + cq (2p - bq) (\ell_{2n-1} + \ell_{2n+3})]. \\ p_{m+n+1} &= f_{m+1} p_{n+1} + cf_m p_n &= f_{n+1} p_{m+1} + cf_n p_m. \\ h_{m+1} p_{n+1} &+ ch_m p_n &= pp_{m+n+1} + qcp_{m+n}. \\ p_n^2 &+ cp_{n-1}^2 &= pp_{2n-1} + qcp_{2n-2} - (p_n \overline{p}_n + cp_{n-1} \overline{p}_{n-1}). \\ \hline p_{n+t} &- (-c)^{t+1} p_{n-t} &= cf_{t-1} + f_{t+1}. \\ s_n \overline{s}_n &+ cs_{n-1} \overline{s}_{n-1} &= p_n \overline{p}_n + cp_{n-1} \overline{p}_{n-1} + p_{n+4} \overline{p}_{n+4} + cp_{n+3} \overline{p}_{n+3}. \\ s_{m+n+1} &= f_{m+1} s_{n+1} + cf_m s_n &= ps_{m+n+1} + qcs_{m+n}. \\ s_n^2 &+ cs_{n-1}^2 &= ps_{2n-1} + qcs_{2n-2} - (s_n \overline{s}_n + cs_{n-1} \overline{s}_{n-1}). \\ \hline s_{n+t} &- (-c)^{t+1} s_{n-t} &= cf_{t-1} + f_{t+1}. \\ \hline s_n &= cf_{t-1} + f_{t+1}. \\ \hline \end{cases}$$

ACKNOWLEDGMENT

I am thankful to Professor P. S. Rema for her help in the preparation of this paper.

REFERENCES

- 1. L. E. Dickson. "On Quaternions and Their Generalization to the History of the Eight Square Theorem." Ann. of Math. 20 (1919):155-71.
- 2. A. F. Horadam. "A Generalized Fibonacci Sequence." Amer. Math. Monthly 68 (1961):455-59.
- 3. A. F. Horadam. "Complex Fibonacci Numbers and Fibonacci Quaternions." Amer. Math. Monthly 70 (1963):289-91.
- 4. N. Jacobson. "Composition Algebras and Their Automorphisms." Rend. Circ. Mat. Palermo 7 (1958):55-80.
- 5. M. N. S. Swamy. "On Generalized Fibonacci Quaternions." The Fibonacci Quarterly 11, no. 6 (1973):547-49.
