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6. COMMENTS 

Even though each Fermat or Mersenne number is not the power (greater than one) 
of an integer, it is not known whether they are square-free. Naturally, we make 
a similar conjecture. 

CONJECTURE 2: For each prime p and positive integer i9 the number L(pi) is square-
free. 

REMARK: It has been shown in [5] that the congruence 2P~1 E 1 (mod p2) is 
closely related to the square-freeness of the Fermat and Mersenne numbers. We 
have shown, by a similar method, that this is also the case for the numbers L(p^). 

It is well known that (p, 2 P - 1 ) = 1 and (n, 1 + 22 ) = 1. Since the prime 
divisors of Lip1) are of the form 1 + kpt + 1 [4, p. 106], it follows that 

(i, L(p^) = 1. 

Finally, we see that while L(pi) possesses many interesting properties, there 
remain unanswered some very elementary questions about this class of numbers. 
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1. INTRODUCTION 

According to [1, p. 45], the total number of subsets of {l, ..., n} such that 
no two elements are adjacent is Fn+1, where Fn is the nth Fibonacci number, which 
is defined by 

p = F = 1. F - F + F 
C 0 r i l 5 j C n r n-l T r « - 2 * 

The sequence {1, ..., n) can be regarded as the vertex set of the graph Pn in 
Figure 1. Thus, it is natural to define the Fibonacci number f(X) of a (simple) 
graph X with vertex set V and edge set E to be the total number of subsets 5 of 7 
such that any two vertices of S are not adjacent. 

The Fibonacci number of a graph X is the same as the number of complete (in-
duced) subgraphs of the complement graph of X. (Our terminology covers the empty 
graph also.) 
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n- 1 

n-1 n 

Fig. 1 

In [1, p. 46] the case of a cycle Cn with n vertices is considered, as in Fig-
ure 1. The Fibonacci number f(Cn) of such a cycle equals the nth Lucas number F* 9 
defined by 

9 7?5 
0 - » - 1 

Let ^ = (7, S^) and X2 = (7, #2) be two graphs with E± 2L #2 > then 

f(Xx) >f(X2). 
So the following simple estimation results! 

(1.1) n + 1 = /(*n) <. /(J) £ /(iQ = 2\ 
where X is a graph with n vertices, and Kn is the complete graph with n vertices 
and Kn its complement. 

If J, Y are disjoint graphs, then we trivially obtain, for the Fibonacci num-
ber of the union X U Ys 

f{X U J) - f(X) • f(Y) . 

2, THE FIBONACCI NUMBERS OF TREES 

Trivially, the graph Pn is a tree with f(Pn) ~ Fn+1° Another simple example 
for a. tree is the star S„ : 

n - 1 

n- 2 

Fig. 2 

The Fibonacci number f(Sn) can be computed by counting the number of admissible 
vertex subsets (they do not contain two adjacent vertices) containing the vertex 
ft or not containing n. Thus 

f(S„) = 1 + 2"-1. 
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THEOREM 2.1: Let X be a tree with n vertices, then 

Fn+1 <f(X) < 2n~1 + 1. 
PROOF: First, we prove the second inequality by induction. For n = 1, 2, it 

is trivial. Let J be a tree with n + 1 vertices and let v be an endpoint of X. 
The Fibonacci number f(X) can be computed by counting the number of admissible 
vertex subsets containing v or not containing v. The number of admissible subsets 
containing v can trivially be estimated by 2 n _ 1 and the number of admissible sub-
sets not containing v can be estimated by 2n _ 1+l using the induction hypothesis. 
So we obtain 

f(X) £ 2n _ 1 + (2n~1 + 1) = 2n + 1. 

To prove the first inequality, it is necessary to prove a more general form; 
hence, we assume I to be a forest. We use induction and, for n = 1 , 2 , the estima-
tion is trivial. Now we proceed by the same argument as above. Let X = (F, E) be 
a forest with n + 1 vertices and v be an endpoint of X. Let X1 be the induced sub-
graph of the set V - {v} and let w be the adjacent vertex of v. Then X2 denotes 
the induced subgraph of the set V - {v9 w}. Trivially, X1 and X2 are forests with 
n and n - 1 vertices, respectively. By the induction hypothesis, we obtain 

f(X) = fax) + f(X2) >. Fn+1 + Fn = Fn+2, 

and so the theorem is proved. 

REMARK 2.2: There are natural numbers m such that no tree X exists with f(X) = m. 
This is evident because natural numbers m exist not contained in intervals of the 
form [Fn, 2 n _ 1 + 1]. Further, there are numbers m contained in such intervals that 
are not Fibonacci numbers of trees. 

EXAMPLE 2.3: Let Rn be the graph with In vertices as in Figure 3. 

72+1 n+2 In- 1 In 
f ? f T T f 

&• • A A 4 4 m 
n- 1 

Fig. 3 

For the Fibonacci numbers of i?n, we obtain the following recursion 

Afl» + i> ~ 2/(i?n) - IfiRn.O = 0, f(R±) = 3, f(R2) = 8. 

The solution of this recursion is 

3 + 2/3 f(Rn) = \ ^ + ^ ) n + 
3 - 2/3 (1 - / 3 ) \ 

Some other examples are treated in more detail in Section 3. 

3. EXAMPLES 

Let X = (F, E) be a graph and y1$ . . . , ys vertices not contained in V. Then, 
J = (V19 E±) denotes the graph with 

Vx = V U {#!, ..., 2/s} and E1 = J? u {{z/i, v j} | 1 <. i <. s, v e F|. 

By the usual recursion argument, we obtain 

(3.i) / a ) = / a > + 2s - i . 
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For an example, we take the following graphs: 

1 

n- 1 

Fig. 4 

EXAMPLE 3.2: We consider the graphs Qn with In vertices and Q'n with In - 1 verti-
ces as in Figure 5. 

Vn 

n+l n + 2 In 
m ®- f i f 

1X1X1XRI 
1 2 1 2 

n + l n + 2 • • • 2n - 1 

_ — i u — 4 — _ s - -® 
1 2 . - • n 

Fig. 5 

Let an and bn denote the Fibonacci numbers of Qn and Qf
n9 respectively. By our 

usual recursion argument, we obtain 

1. 
2. 

an = bn + bn_19 and 
bn =a„_1 + £n_i°  

We now have 

3 . bn_1 - an_2 + fc„_2, 
and by adding (2) and ( 3 ) , 

bn + On_1 = ( 2 n _ 1 + <2n_2 + ^ n - l ^ ^ n - 2 ' 
and so 

a n = 2a n _ 1 + a n _ 2 ; ax = 3 , a 2 = 7. 
This recursion has the solution 

j(l + /2)n+1 + (1 - /2)"+1 - f(Qn). 

EXAMPLE 3.3: Now we consider the graph Vn with 2n vertices, as in Figure 5. By 
the usual recursion argument, we obtain 
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and so 
f(Vn) = fiVn^) + 2/(7n„2); fWJ - 3, f(V2) = 5, 

/<?»> =^(2 n + 2 + (-Dn + 1). 

4. PROBLEMS 

PROBLEM 4.1: Compute the Fibonacci number f(Ln) of the lattice graph Ln with n2 

vertices in Figure 6. 

(n, 1) (n, 2) ... (n, n) 

» 4 A i 

L ••••••• A I 4 

I--- I • k h 

42 
(1, 1)(1, 2) v-.(l,n) 

Fig. 6 

PROBLEM 4.2: Compute the Fibonacci number of the n-dimensional cube Wn with 2n 

vertices in Figure 6. 

PROBLEM 4.3: Compute the Fibonacci number of the generalized Peterson graph Petn 
with 4n + 6 vertices (n > 1). 

Pet 

Fig. 7 

PROBLEM 4.4: Give a lower bound for f(X) in the case of a planar graph X with n 
vertices. Give estimations for f(X) if X denotes a regular graph X of degree p or 
if X denotes an exactly ^-connected graph. 

PROBLEM 4.5: Let a) = (fcn) be an increasing sequence of natural numbers5 then a 
sequence £1 of graphs ^ C I2 C I3 C • .. with F(Xn) = kn exists such that Xi is em-
bedded as an induced subgraph in Xi + 1. This is trivial if we take for Xn the com-
plete graph Kkn_1. 

We define 

6(03) - inf {a:\E(Xn)\ - 0{\V(Xn)\a)\ 

/<*„>-&„ 
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LINEAR SECOND-ORDER RECURSION SEQUENCES 

If Y is a class of increasing sequences of natural numbers (e.g., all increas 
sequences or the arithmetic progressions), then we define 

A(y) = sup 6(a)). 
o a e Y 

T r i v i a l l y , we o b t a i n A(y) <. 2 . 
The problem i s t o g ive b e t t e r e s t i m a t i o n s f o r A(y) i n t h e g e n e r a l case or 

t h e case where y i s t h e c l a s s of a l l a r i t h m e t i c p r o g r e s s i o n s . 
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INTRODUCTION 

Fol lowing Lucas [ 5 ] , l e t P and Q be i n t e g e r s such t h a t 

( i ) (P , Q) - 1 and D = P 2 + 4§ ± 0 . 
Let the r o o t s of 

( i i ) x2 = Px + Q 
b e * 4 

( i i i ) a = (P + Z?*)/2, b = (P - P * ) / 2 . 
Consider the sequences 

(iv) un = (an - bn)/(a - b), vn = an + bn . 

In this article, we examine sums of the form 

E(J)^'(«^-i)fc"^ 
where xn = un or vn 9 and prove that 

g.c.d. (un> uknlun) divides k, 
and that 

g.c.d. (vn9 Vkn/vn) divides k if k is odd. 

PRELIMINARIES 

(1) (un, Q) = (vn, « = 1 
(2) (un, un_1) = 1 
(3) D = (a - b)2 

(4) P = a + 6 , « = - a i 
(5) yn = un+1 + ewn_! 
(6) au n + Qun_1 = a n

s iw„ + Qun_1 = 2?" 
(7) avn + «y n _ 1 = a n ( a - b), ton + ^ n _ x = - £ n (a - 2?) 
(8) z;„ = P y n _ ! + Qv.n-2 
(9) P even i m p l i e s Vn even 


