Therefore, only the Fibonacci and Lucas sequences, and (real) multiples of them, satisfy our requirement that the right-hand side of (2) reduce to a *single* term.

References

H. Freitag. Problem B-426. The Fibonacci Quarterly 18, no. 2 (1980):186.
 A. F. Horadam. "Special Properties of the Sequence w_n(a, b; p, q)." The Fibonacci Quarterly 5, no. 5 (1967):424-434.

3. G. Wulczyn. Problem B-402. The Fibonacci Quarterly 18, no. 2 (1980):188.

COMPOSITION ARRAYS GENERATED BY FIBONACCI NUMBERS

V. E. HOGGATT, JR. (Deceased)

and

MARJORIE BICKNELL-JOHNSON San Jose State University, San Jose, CA 95192 (Submitted September 1980)

The number of compositions of an integer n in terms of ones and twos [1] is F_{n+1} , the (n + 1)st Fibonacci number, defined by

$F_0 = 0, F_1 = 1, \text{ and } F_{n+2} = F_{n+1} + F_n.$

Further, the Fibonacci numbers can be used to generate such composition arrays [2], leading to the sequences $A = \{a_n\}$ and $B = \{b_n\}$, where (a_n, b_n) is a safe pair in Wythoff's game [3], [4], [6].

We generalize to the Tribonacci numbers T_n , where

 $T_0 = 0, T_1 = T_2 = 1, \text{ and } T_{n+3} = T_{n+2} + T_{n+1} + T_n.$

The Tribonacci numbers give the number of compositions of n in terms of ones, twos, and threes [5], and when Tribonacci numbers are used to generate a composition array, we find that the sequences $A = \{A_n\}, B = \{B_n\}$, and $C = \{C_n\}$ arise, where A_n, B_n , and C_n are the sequences studied in [7].

1. The Fibonacci Composition Array

To form the Fibonacci composition array, we use the difference of the subscripts of Fibonacci numbers to obtain a listing of the compositions of n in terms of ones and twos, by using F_{n+1} in the rightmost column, and taking the Fibonacci numbers as placeholders. We index each composition in the order in which it was written in the array by assigning each to a natural number taken in order and, further, assign the index k to set A if the kth composition has a one in the first position, and to set B if the kth composition has a two in the first position. We illustrate for n = 6, using F_7 to write the rightmost column. Notice that every other column in the table is the subscript difference of the two adjacent Fibonacci numbers, and compare with the compositions of 6 in terms of ones and twos.

FIBO	NACCI	SCH	EME	TO FO	RM A	RRAY	OF C	OMPOS	ITIO	NS OF	INT	EGERS	$\frac{11}{A}$	NDE. or	X: <u>B</u>
F_1	1	F_2	1	F ₃	1	F_4	1	F_5	1	F_{6}	1	F_7	1	=	a_1
		F_1	2	F_3	1	F_4	1	F_5	1	F_{6}	1	F ₇	2	=	b_1
		F_1	1	F_2	2	F_4	1	F_5	1	F_{6}	1	F_7	3	=	a_2
		F_1	1	F_2	1	Fз	2	F_5	1	F_{6}	1	F_7	4	=	a_3
				F_1	2	F ₃	2	F_5	1	F_{6}	1	F ₇	5	=	b_2
•		F_1	1	F_2	1	F_{3}	1	F_4	2	F_{6}	1	F_7	6	=	a_4
				F_1	2	F_3	1	F_4	2	F_{6}	1	F_7	7	=	\mathcal{B}_{3}
				F_1	1	F_2	2	F_4	2	F_{6}	1	F_7	8	Ξ	a_5
		F_1	1	F_2	1	F_3	1	F_4	1	F_5	2	F_7	9	=	a_{6}
				F_1	2	F_3	1	F_4	1	F_5	2	F_7	10	=	\mathcal{B}_{4}
				F_1	1	F_2	2	F_4	1	F_5	2	F_7	11	=	a7
				F_1	1	F_2	1	F_3	2	F_5	2	F_7	12	=	a ₈
						F_1	2	F ₃	2	F_{5}	2	F_7	13	=	\mathcal{B}_{5}

One first writes the column of 13 F_7 's, which is broken into 8 F_6 's and 5 F_5 's. The 8 F_6 's are broken into 5 F_5 's and 3 F_4 's, and the 5 F_5 's are broken into 3 F_4 's and 2 F_3 's. The pattern continues in each column until each F_2 is broken into F_1 and F_0 , so ending with F_1 . In each new column, one always replaces F_nF_n 's with $F_{n-1}F_{n-1}$'s and $F_{n-2}F_{n-2}$'s. Note that the next level, representing all integers through $F_8 = 21$, would be formed by writing 21 F_8 's in the right column, and the present array as the top $13 = F_7$ rows, and the array ending in 8 F_6 's now in the top $8 = F_6$ rows would appear in the bottom 8 rows. Notice further that this scheme puts a one on the right of all compositions of (n - 1) and a two on the right of all compositions of (n - 2).

Now, we examine sets A and B.

n:	1	2	3	4	5	6	7	8	9	10	• •
a_n :	1	3	4	6	8	9	11	12	14	16	• •
b_n :	2	5	7	10	13	15	18	20	23	26 .	

Notice that A is characterized as being the set of smallest integers not yet used, while it appears that $b_n = a_n + n$. Indeed, it appears that, for small values of n, a_n and b_n are the numbers arising as the safe pairs in the solution of Wythoff's game, where it is known that [2]

$$(1.1) a_n = [n\alpha], b_n = [n\alpha^2],$$

where [x] is the greatest integer in x and $\alpha = (1 + \sqrt{5})/2$. Further, we can characterize A and B by

COMPOSITION ARRAYS GENERATED BY FIBONACCI NUMBERS

(1.2)

$$a_m = 1 + \alpha_3 F_3 + \cdots + \alpha_k F_k, \ \alpha_i \in \{0, 1\},$$

$$b_m = 2 + \alpha_{\mu}F_{\mu} + \cdots + \alpha_{k}F_{k}, \ \alpha_{i} \in \{0, 1\}.$$

Any integer n has a unique Fibonacci Zeckendorf representation

(1.3)
$$n = \alpha_2 F_2 + \alpha_3 F_3 + \alpha_4 F_4 + \cdots + \alpha_k F_k,$$

where $\alpha_i \in \{0, 1\}$ and $\alpha_i \alpha_{i-1} = 0$, or, a representation as a sum of distinct Fibonacci numbers where no two consecutive Fibonacci numbers may be used. Now suppose 1 is the smallest term in the Zeckendorf representation of n. Then nis in the required form for α_m . Suppose that the smallest Fibonacci number used is F_k , where k is even. Replace F_k by $F_{k-1} + F_{k-2}$, F_{k-2} by $F_{k-3} + F_{k-4}$, F_{k-4} by $F_{k-5} + F_{k-6}$, ..., until one reaches $F_4 = F_3 + F_2$, so that we have smallest term 1, and the required form for α_m .

Similarly, if 2 is the smallest term in the representation of n, then n is in the required form for b_m . If the subscript of the smallest Fibonacci number used is odd, then we can replace F_k by $F_{k-1} + F_{k-2}$, F_{k-2} by $F_{k-3} + F_{k-4}$, ..., just as before, until we reach $F_5 = F_4 + F_3$, equivalent to ending in a 2 for the form of b_m .

Thus A is the set of numbers whose Zeckendorf representation has an evensubscripted smallest term, while elements of B have odd-subscripted smallest terms. Since the Zeckendorf representation is unique, A and B are disjoint and cover the set of positive integers. Also, the unique Zeckendorf representation allows us to modify the form to that given for a_m and b_m uniquely, by rewriting only the smallest term.

Now, we can prove that A and B do indeed contain the safe-pair sequences from Wythoff's game.

<u>Theorem 1.1</u>: Form the composition array for n in terms of ones and twos, using F_{n+1} on the right border. Number the compositions in order appearing. Then, if 1 appears as the first number in the kth composition,

 $k = \alpha_m = 1 + \alpha_3 F_3 + \alpha_4 F_4 + \dots + \alpha_k F_k, \ \alpha_i \in \{0, 1\},\$

and if 2 appears as the first number in the kth composition,

$$k = b_m = 2 + \alpha_4 F_4 + \alpha_5 F_5 + \dots + \alpha_k F_k, \ \alpha_i \in \{0, 1\},\$$

where (a_m, b_m) is a safe pair in Wythoff's game.

<u>Proof</u>: We have seen this for n = 6 and $k = 1, 2, ..., 13 = F_7$, and by using subarrays found there, we could illustrate n = 1, 2, 3, 4, and 5. By the construction of the array, we can build a proof by induction.

Assume we have the compositions of n using ones and twos made by our construction, using F_{n+1} in the rightmost column. We put the F_n compositions of (n - 1) below. (See figure on page 125.)

Take $1 \le j \le F_n$. If $j \in A$, then $j + F_{n+1} \in A$ as the compositions starting with 1 go into A and those starting with 2 go into B, and addition of F_{n+1} will not affect earlier terms used. Note well that no matter how large the value of n becomes, the earlier compositions always start with the same number 1 or 2 as they did for the smaller value of n, within the range of the construction. Now, if j is of the form

124

[May

COMPOSITION ARRAYS GENERATED BY FIBONACCI NUMBERS

$$j = 1 + \alpha_{3}F_{3} + \alpha_{4}F_{4} + \dots + \alpha_{n}F_{n}, \ j \in A,$$

$$j + F_{n+1} = 1 + \alpha_{3}F_{3} + \alpha_{4}F_{4} + \dots + \alpha_{n}F_{n} + F_{n+1}$$

and $(j + F_{n+1}) \in A$, $\alpha_i \in \{0, 1\}$. Since we know that all the integers from 1 to $F_{n+2} - 2$ can be represented with the Fibonacci numbers 1, 2, 3, ..., F_n , for the numbers through F_{n+1} we need only F_2 , F_3 , ..., F_n . Thus the numbers 1, 2, ..., F_{n+2} can be represented using 1, 2, ..., F_{n+1} , and we continue to build the sets A and B, having both completeness and uniqueness, recalling [1] that the number of compositions of n into ones and twos is F_{n+1} . Also, notice that there are F_{n-2} elements of B in the first F_n integers and F_{n-1} elements of A in the first F_n integers.

 $1 \leq j \leq F_n$, $n \geq 2$.

2. The Tribonacci Composition Array

Normally, the Tribonacci numbers give rise to three sets A, B, C [8]:

(2.1)
$$A = \{A_n : A_n = 1 + \alpha_3 T_3 + \alpha_4 T_4 + \cdots \},$$
$$B = \{B_n : B_n = 2 + \alpha_4 T_4 + \alpha_5 T_5 + \cdots \},$$
$$C = \{C_n : C_n = 4 + \alpha_5 T_5 + \alpha_6 T_6 + \cdots \},$$

where $\alpha_i \in \{0, 1\}$. Equivalently, see [7], if T_k is the smallest term appearing in the unique Zeckendorf representation of an integer N, then

 $N \in A$ if $k \equiv 2 \mod 3$, $N \in B$ if $k \equiv 3 \mod 3$, and $N \in C$ if $k \equiv 1 \mod 3$, k > 3, where we have suppressed $T_1 = 1$, but $T_2 = 1 = A_1$, and every positive integer belongs to A, B, or C, where A, B, and C are disjoint.

1982]

Also, recall that the compositions of a positive integer n using 1's, 2's, and 3's gives rise to the Tribonacci numbers, since T_{n+1} gives the number of such compositions [5].

Now, proceeding as in the Fibonacci case, we write a Tribonacci composition array. We illustrate for $T_6 = 13$ in the rightmost column, which is the number of compositions of 5 into 1's, 2's, and 3's. We put the index of those compositions which start on the left with a one into set A, those with a two into set B, and those with a three into set C, and compare with sets A, B, and C given in (2.1).

TRANS COL	COUTING	mo	TODA	100417	07 00	moarm	TOMA	OF THE			INDEX:	a
TRIBUNACCI	SCHEME	10	FORM	ARRAY	OF CO	MPOSIT	TONS	OF INT.	EGERS	<u> </u>	1, <i>B</i> , or	<u>C</u>
T_1 1	T_{2}	1	T_3	1	T_4	1	T_{5}	1	T_{6}		$1 = A_1$	
	T_1	2	T_3	1	T_4	1	T_5	1	T_{6}		$2 = B_1$	
	T_1	1	T_{2}	2	T_4	1	T_5	1	T_{6}		$3 = A_2$	
			T_1	3	T_4	1	T_5	1	T_{6}		$4 = C_1$	
	T_{l}	1	T_2	1	T_{3}	2	T_{5}	1	T_{6}		$5 = A_3$	
			T_{1}	2	T_{3}	2	T_5	1	T_{6}		$6 = B_2$	
			T_{1}	1	T_2	3	T_5	1	T_{6}		$7 = A_4$	
	T_{l}	1	T_2	1	T ₃	1	T_4	2	T_{6}		$8 = A_5$	
			T_{1}	,2	T_{3}	1	T_4	2	T_{6}		$9 = B_3$	
			T_{1}	1	T_{2}	2	T_4	2	$T_{\rm 6}$		$10 = A_{6}$	
					T_{1}	3	T_4	2	T_{6}		$11 = C_2$	
			T_{l}	1	T_{2}	1	T_{3}	3	T_{6}		$12 = A_7$	
					T_{1}	2	T_{3}	3	$T_{\rm 6}$		$13 = B_4$	

We note that thus far the splitting into sets agrees with these rules: A_n is the first positive integer not yet used; B_n is $2A_n$ decreased by the number of C_i 's less than A_n ; and C_n is $2B_n$ decreased by the number of C_i 's less than B_n ; where A_n , B_n , and C_n are the elements of sets A, B, and C of (2.1).

n:	1	2	3	4	5	6	- 7
A_n :	1	3	5	7	8	10	12
B_n :	2	6	9	13	15	19	22
C_n :	4	11	17	24	28	35	41

We next prove that this constructive array yields the same sets A, B, and C as characterized by (2.1) by mathematical induction.

We first study the array we have written, yielding the $T_6 = 13$ compositions of n = 5 using 1's, 2's, and 3's. We write 13 T_6 's in the rightmost column. Then, write the preceding column on the left by dividing 13 T_6 's into 7 T_5 's, 4 T_4 's, and 2 T_3 's. In successive columns, replace the 7 T_5 's by 4 T_4 's, 2 T_3 's, and 1 T_2 , and the 4 T_4 's by 2 T_3 's, 1 T_2 , and 1 T_1 , then the 2 T_3 's by 1 T_2 and 1 T_1 . Any row that reaches T_1 stops. Continue until all the

rows have reached T_1 . Notice that the top left corner of the array, bordered by 7 T_5 's on the right, is the array for the T_5 = 7 compositions of n - 1 = 4, and that the middle group bordered on the right by 4 T_4 's is the 4 = T_4 compositions of n - 2 = 3, and the bottom group bordered by 2 T_3 's on the right is the 2 = T_3 compositions of n - 3 = 2. The successive subscript differences give the compositions of n using 1's, 2's, and 3's.

If we write $T_{n+1}T_{n+1}$'s in the right-hand column, then we will have in the preceding column the arrays formed from T_nT_n 's on the right, $T_{n-1}T_{n-1}$'s on the right, and $T_{n-2}T_{n-2}$'s on the right. All the integers from 1 through T_{n+1} will appear as indices because there are T_{n+1} compositions of n into 1's, 2's, and 3's. The subscript differences will give the compositions of n into 1's, 2's, and 3's, and we can make a correspondence between the natural numbers, the compositions of n, and the representative form of the appropriate set. Those T_{n+1} compositions are ordered with indices from the natural numbers. Each composition whose leftmost digit is one is cast into set A; those whose leftmost digit is two are cast into set B; and those whose leftmost digit is three are cast into set C. Descending the list, we then call the first A, A_1 , the second A, A_2 , ..., the first B, B_1 , the second B, B_2 , and so on. We have now listed the elements of A, B, and C in natural order. Since the representations of A_n , B_n , and C_n from (2.1) are unique, see [7], and since this expansion is constructively derived from the Zeckendorf representation so that the largest term used remains intact (by the lexicographic ordering theorem [7]), every integer $m < T_n$ uses only T_2 , T_3 , ..., T_{n-1} in the representation, and T_n can itself be written such that the largest term used is T_{n-1} . Let j by any integer, $1 \leq j \leq T_n$. Assume that j can be expressed as in (2.1). Then j' = $j + T_{n+1}$ will be in the same set as j, since all early terms of j and j' will be the same. Further, if the leftmost digit of the jth composition is a, where $1 \leq j \leq T_n$, then the leftmost digit of the j'th composition, $j' = j + T_{n+1}$ will be a, since the leftmost digits are not changed in construction of the array.

1982]

128

Recall that set elements are not characterized by the composition, but only by its leading 1, 2, or 3. Each number in the *j*th position in the original gives rise to one in the $(j + T_{n+1})$ st position in the same set *A*, *B*, or *C*. Also, $j + T_n + T_{n+1}$ belongs to the same set as *j*.

References

- 1. Alladi Krishnaswami & V.E. Hoggatt, Jr. "Compositions with Ones and Twos." The Fibonacci Quarterly 13, no. 3 (1975):233-239.
- V. E. Hoggatt, Jr., & Marjorie Bicknell-Johnson. "Representations of Integers in Terms of Greatest Integer Functions and the Golden Section Ratio." The Fibonacci Quarterly 17, no. 4 (1979):306-318.
- 3. A.F. Horadam. "Wythoff Pairs." The Fibonacci Quarterly 16, no. 2 (1978): 147-151.
- 4. R. Silber. "Wythoff's Nim and Fibonacci Representations." *The Fibonacci Quarterly* 15, no. 1 (1977):85-88.
- 5. V. E. Hoggatt, Jr., & D. A. Lind. "Compositions and Fibonacci Numbers." The Fibonacci Quarterly 7, no. 3 (1969):253-266.
- V. E. Hoggatt, Jr., Marjorie Bicknell-Johnson, & R. Sarsfield. "A Generalization of Wythoff's Game." *The Fibonacci Quarterly* 17, no. 3 (1979): 198-211.
- 7. V. E. Hoggatt, Jr., & Marjorie Bicknell-Johnson. "Lexicographic Ordering and Fibonacci Representations." *The Fibonacci Quarterly*, to appear.
- 8. V. E. Hoggatt, Jr., & A. P. Hillman. "Nearly Linear Functions." The Fibonacci Quarterly 17, no. 1 (1979):84-89.
