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1. INTRODUCTION 

For the integer k (k ^ 3) and the natural number n, we call the integer 

pn,k = { { ( & - 2)n2 - (fe - 4)n} 

the nth polygonal number of order k. If k = 3, this number is called the nth 
triangular number and is denoted by tn. 

Wieckowski [1] showed that the system of Diophantine equations 
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ty == tu 

~kz ~ £y 

^z ~ tw 

has infinitely many solutions. It seems difficult to establish the counter-
part of this theorem for general polygonal numbers. 

In this paper it will be shown that the system of Diophantine equations 

Px, k + Pyt k ~ ^u, k 

Px,k + Pz,k = Pv, k 

has infinitely many solutions for any integer k (k > 3). In other words, 
there are infinitely many polygonal numbers of order k which can be repre-
sented in two different ways as the difference of polygonal numbers of order 
k. 

To show this s we establish a stronger theorem in a manner similar to that 
used earlier in [2], 

THEOREM: Let a and b be integers such that a > 0 and a = b (mod 2)s and let 

An - -j(an2 + bn) (n = 1, 2, 3, . . . ) . 
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There are an infinite number of An1s which can be expressed in two different 
ways as the difference of numbers of the same type. 

PROOF OF THE THEOREM 

First, we prove the following lemma. 

LEMMA: The equation 

Az = Am - An (1) 

is satisfied by the positive integers 

£ = (pa + l)s (2) 

m = n + s =? -|{(r2a2 + 2pa + 2)s + rb} (3) 

n = ~-{ra(ra + 2)s + rb} (4) 

where r is any positive integer and s is any sufficiently large positive in-
teger that is odd if both a and r are odd. 

PROOF: From (1), we have 

£(a£ + b) = (m - n) (am + an + b). 

Therefore, the integers £, m, and n which satisfy the relations 

£ = o (m - n) , 
and 

a£ + 2? = —(am + an + b) , 

for any possible constant e, give a solution of (1) . Solving for m and n, we 
have 

m = lit + °l + a(c " 1)} = I { ( p a + D 2 s + s + P£} 
n = - | j - ^ + c£ + |(<? - 1)1 = ^{(ra + l)2s - s + rb}, 

where £ = cs, and e = ra + 1 are the defining equations for P and s. Equa-
tions (2), (3), and (4) follow immediately. 

By observing Equation (4) and recalling that a E b (mod 2) , we see that 
if p is any positive integer and s is any integer that is odd if both a and 
p are odd, which also satisfies 

8 > max^O , - — 7 ;—rr- > , 

( aira + 2) j 

then £, m, and n are positive integers, and the lemma is proved. 
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To prove the theorem., we first observe that for any t that satisfies the 
same condition as s in the lemma, 

lf = ~{ra(ra + 2)t + rb} 9 

mf - ~^{(r2a2 + 2va + 2)t + rb}, 

satisfy the equation 

(pa + l)t5 

4£, = ̂  - An,. (5) 

Now we shall determine values of s and t so that we have £ = £f» For these 
valuess (1) and (5) will yield the required representations, 

Let 

s = -^{ra(ra + 2)x + r(ra + 1)2?}, (6) 

t = (ra + l)x + p£9 (7) 

where x is an integer that makes s odd if ra is odd* Then we have 

£= (pa + l)s = 2"{pa(pa + 2)t + rb} = £f 

and thus9 for x sufficiently la.rge? s and t given by (6) and (7) will satisfy 
our requirement. Substituting (6) and (7) into £s m5 n, m\ and n \ we get 
the following proposition, which establishes the theorem. 

PROPOSITION: If x is a sufficiently large integer that makes s in (6) odd 
whenever ra is odd, then 

I = ~{ra(ra + 1)(pa + 2)x + rira + l)2b} 

m = T{ra(ra + 2) (p2a2 + 2ra + 2)x + r(r3a3 + 3p2a2 + 4pa + 4)2?} 

n = ~{r2a2(ra + 2) 2x + p(p3a3 + 3p2a2 + 2pa + 2)b} 

l " • ^ ' ' 2 . 2 , o _ , 0 \ ™ JL ™ / ^ 2 ? 
m' = -̂ {(ra + l)(p2a2 + 2pa + 2)x + r(r2a2 + 2pa + 3)2?} 

nF = (ra + l)2x + p(pa + 1)2? 

are positive integers, with m ^ m\ which satisfy the relation 
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Ai Am An Ami — Anr» 

Note that for any p, as and b, the equation m = m' has at most one solu-
tion Xi because it can be reduced to the equation 

(r2a2 - 2)x = -r(ra - 1)2?. 

3. THE CASE OF POLYGONAL NUMBERS 

If we put 

a = k - 2, b = ~(k ~ 4), for k > 3, 

in £, rris n» m'9 and nf in the proposition, we get formulas for polygonal num-
bers which satisfy the equation 

^A, k = ^m,k ~ Pn,k = Pm',k ~ ^n',k' '**) 

If p = 1, for instance, then we have 

I = ~{/c(^ - 1) (k - 2)* - (k - 1)2 (k - 4)} 

m = |-{fe(̂  - 2)(k2 - 2k + 2)x - k{k - 4)(k2 - 3k + 4)} 

n = |{^2(/c - 2)2x - (k - 4)(k3 - 3k2 + 2k + 2)} 

m' = -|{(k - D(k2 - 2k + 2)x - (k - 4)(k2 - 2k + 3)} 

n' = (k - l)2x - (k - l)(k ~ 4). 

For every positive integer x, if k is even, and for positive x such that x E 
k + 1 (mod 4), if & is odd., these values are positive integers with m 4 mf, 
which satisfy Equation (8). 

In the case of v = 2 we have, for every positive integer x9 

£ = 2(k - l)(k - 2) (2k - 3)a? - (k - 4) (2k - 3) 2 

m = 2(k - l)(k - 2)(2k2 - 6k + 5)x - 2(k - 4)(2k3 - 9k2 + 14k - 7) 

n = 4(k - l)2(k - 2)2x - (k - 4)(4k3 - 18k2 + 26k - 11) 

m' = (2k - 3)(2k2 - 6k + 5)x - (k - 4)(4k2 - 12k + 11) 

nr = (2k - 3)2x - 2(k - 4)(2k - 3), 

which are positive integers with m £ mr, which satisfy Equation (8). 
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For k = 3 and 5, these values are as follows. In the case of r = 1, we 
use kx for k = 3 and 4x - 2 for k = 5 instead of x$ so that we can get posi-
tive integral values for every positive integer x« 

k = 

k = 

3 

5 

£ 
777 
n 

m' 
nt 

£ 
77? 
n 

m< 
n* 

= 

= 
= 
= 
= 

= 
= 
= 
= 
= 

r = 1 

12x + 2 
15x + 3 
9 x + 2 
20x + 3 
16x + 2 

120^ - 68 
255x - 145 
225x - 128 
136x - 77 
64x - 36 

£ 
m 
n 

mf 

nf 

£ 
m 
n 

mf 

nf 

— 
= 
= 
= 
= 

= 
= 
= 
= 
= 

r = 2 

12ar + 9 
20x + 16 
16a? + 13 
15a: + 11 
9x + 6 

168a; - 49 
600a; - 176 
576a; - 169 
175x - 51 
49a; - 14 

ACKNOWLEDGMENT 

This note was written during my stay at the University of Santa Clara. I 
would like to thank Professor G. L. Alexanderson there for correcting it. 

REFERENCES 

A. Wieckowski. "On Some Systems of Diophantine Equations Including the 
Algebraic Sum of Triangular Numbers." The Fibonacci Quarterly 18, No. 2 
(1980):165-170. 
S. Ando. flA Note on the Polygonal Numbers." The Fibonacci Quarterly 19, 
No. 2 (1981):180-183. 


