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Let S = a19 a29 ...» and T - b1, b2, . . . be sequences of integers, and let 
g be an integer. Then gS and S + T denote the sequences gal9 ga29 «•• and 
ct\ + Z>i* CL2 •+ b2* ..•» respectively. Also {5} denotes the set {al9 a29 . . * } . 

If the an of S are positive and strictly increasing, the characteristic 
sequence \S = ol9 c<i9 ... has cn = 1 when n is in {S} and e n = 0 otherwise. 
Also AS denotes the sequence d19 d2> ... with dn = an+1 - aM. 

DEFINITION: A system 5 X , 5 2 9 , .. 9 Sr of sequences of strictly increasing pos-
itive integers is self-generating if the sets {5i}, {JS,

2}9 ...» {£r} partition 
Z + = {l, 2, 3, ...} and there is an rx r matrix (dhk) with positive integral 
entries such that 

LSh = dhl(x5x) + dh2(xS2) + ••'. + dhTixSr) for 1 < fe < P. 

Hoggatt and Hillman in [2] and [3] used shift functions based on certain 
linear homogeneous recursions to obtain self-generating systems. In Theorem 
5 of Section 7 below, we generalize on their work by increasing the set of 
recursions for which similar results follow. Examples are given in Section 8. 

1. THE RECURSIVE SEQUENCE U 

In the following, d and p 1 9 p 2 , ..., pd are fixed integers with d > 2 and 
Pi ^ Pi ^"•' ̂  Pd-i ^ Pd ~ •*•* Also u n is defined for all integers n by ini-
tial conditions 

Ux = 1, UQ = U_x = U_2 = *•• = ^2-d = ^ 

and the recursion 

Un + d = PlWn + d-l + PlUn + d-2 + '" + ?<**„• 

For each integer i9 let J/̂  denote the sequence ui + 19 ui + 2, 
written as U. 

Hoggatt and Hillman obtained self-generating systems using such recur-
sions for the case d = 2 in [3] and for general d with p 1 = p 2 = • • • = pd = 1 
in [2]. 

(1) 

(2) 

. and let UQ be 
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In the representations discussed below, we want U to be an increasing 
sequence of positive integers with 1 as the first term. This is clearly true 
when p1 > 1. If px = 1, then u1 = u2 - 1 and one of these terms must be de-
leted; this is equivalent to changing the initial conditions (1) to the con-
ditions uh = 2?l"1 for Kh<d of [2]. Since the case p± = 1 is that of [2], 
we avoid notational complications by assuming that p1 > 1 in what follows. 

The representations introduced next are similar to those of the papers in 
the special January 1972 issue of this Quarterly as well as those of [2] and 
[3]. 

2. CANONICAL REPRESENTATIONS 

Let N = {0, 1, 2, ...}. If X = x1, x2, ... and I = y19 y2, ... are se-
quences of numbers with xn = 0 for n > h9 let 

X * J = x±y± + x2y2 + ••• + xhyh. 

In this section the only properties of U = u-±, u2» ... needed are 1^ = 1 and 
the fact that U is an increasing sequence of integers. 

With respect to U, we define inductively for each m in N a sequence Z^ = 
eml, em2, ... of nonnegative integers as follows. Let all the terms of EQ be 
zero. Assume that Eh has been defined for 0 ̂  h < m. Since the un are un-
bounded and ux - 1 < 777, there is a largest /c such that uk < 777• For this &, 
let t - m - uk. Then Z?t is defined, and we let £w& = 1 + etk and ewn = etn 

for n ^ k. Clearly Em
 a U - m, i.e., we have the representation 

m = emlu± + em2u2 + ••• . (3) 

It is also clear that when m = uk with k ̂  1, em?J = 1 and £OTS = 0 for s £ k. 

For n ̂  2, let gn and rn be the integers (guaranteed by the division al-
gorithm) such that 

m ~ O ^ n + l ^ + l + emvn + 2Un + 2 + ' * ' ) = <?nMn + ^ n > 0 < P n < M n . 

Then the definition of #m implies that 

CLn = g * m a n d vn = emlwl + ^ 2 ^ 2 + • • • + ^ . n - l ^ n - l -

Hence 

emlWl + e,2W2 + '•• + ̂ ,n-lWn-l < Wn f°* n> 2. (4) 

We next show that (4) and the fact that each emh is a nonnegative integer 

characterize Em. 

LEMMA 1: Let E - el9 e29 .... and Er - e[9 e29 ...be sequences of nonnegative 
Integers with en = 0 = e^ for n greater than some v. Also let 
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elUl + e2u2 + ..- + en_1un_1 < un 
and 

e[u1 +eJ
2u2 + ••- + eJL_1un_1 < un for n > 2 (5) 

and E • U = Er * U. Then E = ET. 

PROOF: Since en = 0 = e^ for n > r, E ^ E! implies that there is a largest n 
with en ^ e^9 and we let £ be this n. Without loss of generality, we let 
et < e/. Upon deletion of the equal terms in E • U = Ef • [/, we have 

e1w1 +. • • • + etut = ̂.(ẑ  + • • • ' + elut. 

Since U\ = 1, this implies that £ > 1. Then 

ut < (e/ - et)ut = et 'ut - etut 

= O ^ + ... + £t _!«£_!) - (e{Wx + ... + e't_1Ut_1). 

Since each enf ̂  0S this implies that 

Ut < g^! + ••• + £t_iWt_15 

contradicting (5) and proving that E - Ef
 B 

The following definition introduces another characteristic property of 
the Em which will be needed below. 

DEFINITION: A sequence E = el9 e2, ... is compatible [with respect to the 
recursion (2)] if, for any In in Z+ and any integer k with 1 < k ̂  d9 the se-
quence of k differences 

has the two following properties: 

I. If h = 1 or k ~ d, at least one difference in (6) is nonzero. 

II. If some difference in (6) is nonzero, the first nonzero difference 
is positive. 

THEOREM 1: For each m in Z+, Em is.compatible. Also if E = e19 e29 . . . is a 
compatible sequence with en = 0 for n greater than some n0 and E 8 U = 777 then 
E = Em. 

PROOF: We first show that Em is compatible. Let E = Em. If h = I or k = d 
and all the differences in (6) were zero, then it would follow from (1) and 
(2) that 

uh + k = eh+k-luh+k-l + eh+k-2uh+k~2 + ••• + ehUh. 
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Since this would contradict (4), we have shown than I holds. 

To prove II, we assume it false and seek a contradiction. Then we can 
assume that in (6) the first nonzero difference is p - eh+k_Q and also that 
eh+k-g ^ 1 + Vq • These assumptions would imply 

h+k-i h+k-i g 

E eoU3 > E eJud > uh+k-g+ t,PjUh + k-r 
j-h j=h+k-g j - i 

d 
Here , i f one u se s t h e r e c u r s i o n (2) t o r e p l a c e uh + k_ by £} Pjuh + k-g-j * o n e 

f i n d s , s i n c e p± > p 2 > • • • > pd , t h a t J = 1 

fc+ fc-i d # 

E^ ^ « j > E PdUh + k-g-j + E Pjuh + k-j 
j=h J = 1 j = 1 

> E pjuh+k_j+ EPjuh+k-j - "*+*• 
j-0 + 1 i=i 

This contradicts (4), and thus II holds, and ̂  is compatible. 

Second, assume that E is compatible, the desired n0 exists, and E • U - m. 
It suffices to show that un > e1u1 + e2u2 + ••• + en.1un_1 for n > 2, since 
this, the hypothesis # • £/ = #?, (4), and Lemma 1 imply that E = Em. We prove 
these inequalities by induction on n. The hypotheses I and II with h ~ 1 = k 
imply that y1 > e±. Hence, u2 = px > ex = e^^, and the case n = 2 is true. 
Assume that n > 2 and that the desired inequalities are true for 2, 3, ..., 
n - 1. Using I and II, one finds a ^ in {1, 2, ..., <i} such that 

Pk > 1 + £n~fc and p̂ . = en_j. for 1 < j < k. (7) 

Using the hypothesis of the induction and n - k < n, one has 

w-fc -l 

J - 1 

Using (2), (7), and (8), one sees that 

d k n-Jc-i k n - 1 
Un = E PjUn-j > Un.k + £ en-jUn-o > E ej Wj + E en-j«n-j = E ^ j -

This e s t a b l i s h e s t he d e s i r e d i n e q u a l i t y for n and completes t h e proof of t h e 
theorem. 

LEMMA 2: Let k > 1, w = uk. Also define the sequence F = / x , / 2 , . „ . Jby 

A = Pr ~ *> fctfiere r e { 1 , 2 , . . . , <i} and 2» E fc - 1 (mod J ) ; 
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fn=0 for n > k; 

fn = 0 for n E k (mod d); 

fn = VQ when k ~ n = j (mod d) , 1 < n < fc, and n f k (mod d) . 

Then Ew_i = F. 

PROOF: Obviously F is compatible. Since p = 1, repeated use of (2) gives 

q-l d-1 
Uz = Uz_qd + Y, £ PfcW

a-fcd-fcfor <? £ Z+* ( 9 ) 

fr = 0 ^ = 1 

Now let q e Ns r e {1, 25 ..., d} , and s = qd + r + 1. Then 

^s-qd = ^ P + 1 = Pl^r + PzUr-l + •'• + PrUl 

follows from (2). Hence9 (9) can be rewritten as 

q- 1 d-1 v 
uz = uqd+r+1 = ^ x Pku*-hd-k + E Pfcw2.+i-k- (10> 

h = 0 ^ = 1 fc-l 

Now, F • [/ = U - 1 follows from (10), and then Theorem 1 gives us the desired 

3. PARTITIONING Z+ 

Let m E Z + . Then em^ f 0 for some k and we define zm as follows: if 
eml > 05 zm = ls and if eml = 0S then zm is the largest 7z such that ems = 0 
for 1 < 8 < h. For 1 < t < d, let 7t = {m : sm = t (mod d)h Clearly, 7X, 
72s . . . s 7̂  form a partitioning of Z+. 

4. THE SHIFT FUNCTIONS O1 

Let Z be the set of all integers. Recall that U^ denotes the sequence 
u.,,» u.JO> ... . For each t in Z, let oi be the function from N to Z with 

c^fa) = £OT • Ui = ewlwi + 1 + em2wi + 2 + ••• for all m in N. 

The following properties are easy to verify: 

(i) a^im) satisfies the recursion (2) for fixed m in N and varying •£. 

(ii) 0^(0) = 0 for all t in Z. 

(iii) oi(uk) = uk + ir for t in Z and k in Z+. 

(iv) at + 1(w) = 0(0^(171)) for 777 and i in i!7. The proof of this depends on 
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the fact that the canonical representation of Ot(m) is, in fact, E} 
shifted, i, times. 

(v) 0° (m) = m for m in N. 

5. DIFFERENCING a* 

For i in Z and m in Z + , let the backward difference Vcr^m) be defined by 

VoHm) = oHm) - a*(m - I) = Em • ̂  - ̂  • ̂ .. 

For t in Z and n in Z + , let Z)^n = Va^(un). If wn = w9 then #w = 0X, e2* ••-
with en = 1 and et = 0 for t £ n and £'tl7-1 = /x, /2 > • • • * fn-i9 ^, ®> ••• wi-tn 

the f. as described in Lemma 2. Then 

n-l 

Let n = k (mod d) with & in {1, 2, . .., d}. Temporarily, let i > 2. Then, 
using (10) with s = i + n, the formulas of Lemma 2 for the f., and the recur-
sion (2), one finds that 

Din = ui+x if k = 1, (11) 

and if k ? 1, 

c ; « - u
i+i +Pk

ui +Pk + iui-i + ••• + P d M i + ^ - d 

For fixed n and varying £, the Din satisfy the same recursion (2) as the u's, 
Hence, the truth of (11) and (12) for i ̂  2 implies these formulas for all 
integers i,. In particular, these formulas imply the following lemma. 

LEMMA 3: Din = Dik if n = k (mod d). 

Next we show that Voz(m) depends only on i, and the k such that m e Vk . 

THEOREM 2: Let m £ Vk . Then Vai(m) = Dik. 

PROOF: Let Em = e19 e2s . .. . Since me Vk s there is a positive integer s 
such that z = fc (mod d) , es > 0, and es = 0 for 1 < s < s. Let w = es and 
%w-i ~ fi» /*2' •••> /a-i» 0, 0, ... . Using Theorem 1, one finds that 

Em-l = / l ' J29 • • • » fz-ls ez " 1» ^ z + 1 5 ^ s + 2 5 " • " 

and hence , 
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Then Lemma 3 implies that loz{m) - Vik as desired. 

The two following results are not needed for the main theorem (Theorem 5 
below) but they generalize on work of [2] and [3]. 

LEMMA 4: For 1 < i < d9 Va"1 (m) is 1 for m in V{, + 1 and is 0 otherwise. 

PROOF: Temporarily, let k $ 1. By Theorem 2 and (12), for m in Ffe, 

VcTMm) = uk_i - P^.i-i - ••• - Pfc.x«., + 1 + "_i + 1 

- Pk-iu-i + i + M-ni" 

For k = i + 1, this becomes 

Va"Mm) = M l - pxu0 - p2wml - ... - Piu_i + 1 + u_i+1 = u± = 1, 
since 

For k £ i + 1, i.e., for 777 not in Vk , Vo~t (m) = 0, since 

by (1) and (2). The same results are obtained for k = 1 from (11). 

THEOREM 3: Let \s\ denote the number of elements in the set S, Then 

( i ) o'i(m) = \Vi+1 PI { 1 , 2, . . . , 777> J f o r £ = 1, 25 . . . , d - 1. 

( i i ) m - a" 1 (777) - a"2(m) - . . . - a"(d"1} (777) = | F^ n { 1 , 2 , . . . , 772} | . 

PROOF: For ( i ) , 

VcT*(l) + Va"*(2) + ••• +Va"*07z) = [ a " M D - a " M 0 ) ] + [ a "M2) - c T M l ) ] 

+ ••• + [a"Mm) - Q-MTT? - 1)] 

= CTMTT?) - a"M0) - a"* (777). 

For fixed i, by Lemma 4, Vc"^(l) +••• + Vo~z (m) is the number of integers in 
"P-i + i H {1, 2, ...,777}. But the telescoping sum shows this to be a"1 (777). Part 
(ii) follows from (i). 
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6. A PARTITIONING-OF N 

For i = 19 2, ..., <2 and j = 0, 1, ..., p^ - 1, let B^ be the sequence 
2?0, b1$ ... with Z?m = ui + 1 + J - p^ + o^im). When the dependence of 2?m on £ 
and j has to be indicated, we will write bm as b^m . 

THEOREM 4: The px + p2 •+ " • • + Pd subsets {5# } partition N. 

PROOF: Let s £ N. We need to show that there is a unique ordered triple 
(is j 9 7W) such that 

s = wi+1 + j - p^ + a*(m). (13) 

Let S'g = e19 eZ9 ... and for the sought after m$ let Em = / x, /2, . .., i.e., 
let e ^ = gfc and eTÔ  = /^. With this notation and using (1) and (2), one can 
rewrite (13) as 

8 = p1Ui + p2Ui_1 + •-. + p^.^2 + piU1 + J ~ P̂  + fiUi+1 + f2Wi+2 + ..- . 

Since u1 '= ls p.^% + J - p^ = ju1 and the equation takes the form 

S = JMi + Pi. ^2 + Pi„2U3 + . - • + p l M i + / 1 U i + 1 + / 2 M i + 2 + • • • . (14) 

Using the condition of Theorem 1 that Em = f1, jf2 * ••• must be compatible, 
together with the fact that j ^ p^. - 1, one sees that the sequence 

O = J5 Pi-is Pi-29 »*«* Pi* j i » J2» ••• 

must be compatible. Since the right side of (14) is S * U9 Theorem 1 (with m 
replaced by s) tells us that (13) is equivalent to S = Es . 

If there is no £ with 2 < i, < d and 

(p15 p2» ..., p^.i) = (e*, ̂ . ^ ..., e2) (15) 

then the sequence e2% e3, ... is compatible and E8 - S holds if and only if 
i = 1, j = e ^ and the sequence <22, e3, ... is the sequence f1, /2, ... . 

Now assume that (15) holds for some j , in {2, 39 . .. , <f} but not for any 
larger integer in this set. We wish to show that the sequence 

ei+i> ei+2> ••• (16) 

is compatible. Since e19 e25 ... is compatible, (16) can fail to be compat-
ible only if there is an integer g with 

(pis p2, ..., pg) = ( e ^ , ei + g_19 ..., e i + 1) and i < # < d. (17) 

Then condition II (of the definition of a compatible sequence) with h = i- and 
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k = 1 + g would imply that et < Pg + 1- If e± < pg+1, (15) gives us the con-
tradiction p1 = ei < pg + 1 < px. Now condition I implies that g + I < d. Also 
ei = P# + i similarly implies that p1 = p2 = • • • = p^ + 1. This, (17), and the 
equality V\ ~ ei from (15) would give us 

(p15 p2, ..., pg + 1) = (ei + j7, ̂  + ̂ .19 ...5 ^ ) . 

As before, condition II with h = i - 1 and /c = 2 + ̂  implies that pg + 2
 = Pi> 

and hence that 

(pl5 p2, ...,-pg+2) = (ei + (7, e i + (7-1, .... e . ^ ) . 

This process would continue until we had 

(Pi. P2> •••> Pi + g-i> = < ^ + (7» ^ + £-1' •••• e2>» 

which contradicts the fact that the i in (15) is maximal. 

Hence &i + 1> 0£ + 2> ••• satisfies I and II and so is compatible. Then Es -
S holds if and only if i is the maximal i for (15), J = e19 and 

J19 f 2 s • • • = ei + i» ^i + 2 » • • • • 

This completes the proof. 

7. SELF-GENERATING SYSTEM 

For i, - 1, 2, ..., c? and j = 1, 2, ..., p., let ̂ - be the sequence 

with a^jm = 1 + &£,j-if/n_i (the Z?fs are as in Section 6). When both i and j 
are known from the context, we may write a^^m as am, 

THEOREM 5: The sequences A^ for 1 < i < J and 1 < J < p. form a self-gen-
erating system. 

PROOF: From the definition of the sets {BiJ_1} in Section 6 and 7̂  in Sec-
tion 3, it follows that 

where T is the union of the {Aij } for 1 < i < d and 1 < j < p^, and that 

Vh + i = t^^} f o r h = x> 2> •••> d - I. 

Since the {B^j} form a partition of # (or, equivalently, since the Ffs 
partition Z+) , the {4^- } partition Z+. Since 2 ? ^ = wi+1 + J - p. + 0i(m)9 
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Vbijm = bi,j,m " Kj,m-1= ^Ui + 1 + «?' " P* + ° '*<&) ) - {ui + 1 + J - p ^ + CF *( /??- 1 ) ) 

= a^Or?) - oi(m- 1) = 

= Vo*(m). 

Then by Theorem 2 we have 

Vbijm = Vcr*(m) = Dik If m e Vk. 

Since a,ijm = 1 + ̂ ,j-i,m-i> ^tj ̂ s tne sequence ^ , d2, ... with 

"w = aiyj, m+l ~ ai,j,m = ®i,j-l,m~ ^i,j-ltm-l = ^ife 

when W2 £ 7/j . Since each Ffe i s an {A^j} or a union of {A-cj}» 

&Aij = 2 dijhkXAhk 
l4h<d 
Kk<ph 

where d^j-hk - Dis when { i4^} i s a subse t of Fs . 

8. EXAMPLE 

For d = 3 and px = p 2
 = 3, p3 = 1, we have un+3 = 3un+ 2 + 3u„+1 + u„ and 

[/ = 1, 3, 12, 46, 177, .... As an illustration of the canonical representa-
tion in Section 1, for m = 136, we have Em = 2, 2, 3, 2, 0, 0,... and o(m) = 
2u2 + 2u3 + 3uk + 2w5 = 522. The following is a table of the G^O?) for the 
iTs involved in Theorem 5. 

m 

o(m) 
o2(m) 
a3 (m) 

0 

0 

0 

0 

1 

3 

12 

46 

2 

6 

24 

92 

3 

12 

46 

177 

4 

15 

58 

223 

5 

18 

70 

269 

6 

24 

92 

354 

7 

27 

104 

... 

8 

30 

116 

9 

36 

138 

10 

39 

150 

11 

42 

162 

12 

46 

177 

The p 1 + p2 + p3 = 7 subsets partitioning Z+ are: 

Ul x} = {o(m) + 1} = {1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 40, ...} 

{A12} = {o(m) + 2} = {2, 5, 8, 14, 17, 20, 26, 29, 32, 38, 41, ...} 
{i413} = {o(m) + 3} = {3, 6, 9, 15, 18, 21, 27, 30, 33, 39, 42, ...} 
{A21} = {a2(m) + 10} = {10, 22, 34, 56, 68, 80, 102, ...} 

{AZ2} = {o2(m) + 11} = {11, 23, 35, 57, 69, 81, 103, ...} 
{A23} = {G2(TT?) + 12} = {12, 24, 36, 58, 70, 82, 104, ...} 
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and 

{Asl} = {oz{m) + 46} = {46, 92 , 138, 223, . . . } . 

The fo l lowing i s a t a b l e of Dik for -2 < i < 3 and 1 < k < 3 . 

l 
2 
3 

-2 

0 
0 
1 

-1 

0 
1 
0 

0 

1 
1 
1 

1 

3 
6 
4 

2 

12 
22 
15 

3 

46 
85 
58 

Since V1 = A1X U A12 U i42 1 U A22 U A 3 1 , F2 = A139 and F3 = A23, we have 

M i j = z : ) i i ( X ^ i i ) + £ 1 1 ( x 4 1 2 ) + ^ i 2 ( X ^ i 3 ) + ^ n ( X ^ 2 i ) 

+ ^xi(X^22) + ^ i 3 ( X ^ 2 3 ) + £ n ( X ^ 3 i ) 

M 

kA 

2 j 

3 j 

= 2? 2 1 (xAn) + ^ 2 i ( X ^ 1 2 ) + £ 2 2 ( X ^ 1 3 ) + ^ 2 i ( X ^ 2 1 ) 

+D21(XA22) +D23(XA23) + £ 2 1 ( X ^ 3 1 ) 

= Z?31(x41]L) + ^ 3 i ( X ^ 1 2 ) + ^ 3 2 ( X ^ 1 3 ) + ^ 3 i ( X ^ 2 1 ) 

+ £3 1(x^2 2) +^ 3 3 (x^ 2 3 ) + ^ 3 i ( x ^ 3 1 ) 

and the 7x7 matrix (dhk) for the self-generating system A±1, A'12, ^13s
 A

2i9 

A12> A2Z> AZ1 1 S 

'3 
3 
3 
12 

3 
3 
3 
12 

6 
6 
6 
22 

3 
3 
3 
12 

3. 
3 
3 
12 

4 
4 

. 4 
15 

3 
3 
3 
12 

12 12 22 12 12 15 12 
12 12 22 12 12 15 12 
y46 46 85 46 46 58 46y 

As an illustration of Theorem 3(i), with i = 1 and m = 20, 

a"1(20) = a2(20) - 3a(20) - 3a° (20) 

= 2u + 2uk + u5 - 3(2w2 + 2w3 + uh) - 60 

= 5 = \V2 H {1, 2, ..., 20}|, 

where V2 = {n : sn = 2 (mod 3)} = {3, 6, 9, 15, 18} since the only sequences 
En , with n < 20 and sn = 2 (mod 3) are: 
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E3 = 0, 1, 0, 0, 

Ee = 0, 2, 0, 0, 

E9 = 0, 3, 0, 0, 

J15 0, 1, 1, 0, 

tf . = 0, 2, 1, 0, 
i. 8 
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