SELF-GENERATING SYSTEMS

RICHARD M. GRASSL

University of New Mexico, Albuquerque, NM 87131 (Submitted September 1980)

Let $S = a_1$, a_2 , ..., and $T = b_1$, b_2 , ... be sequences of integers, and let g be an integer. Then gS and S + T denote the sequences ga_1 , ga_2 , ... and $a_1 + b_1$, $a_2 + b_2$, ..., respectively. Also $\{S\}$ denotes the set $\{a_1, a_2, \ldots\}$.

If the α_n of S are positive and strictly increasing, the characteristic sequence $\chi S=c_1,\ c_2,\ \dots$ has c_n = 1 when n is in $\{S\}$ and c_n = 0 otherwise. Also ΔS denotes the sequence $d_1,\ d_2,\ \dots$ with d_n = a_{n+1} - a_n .

<u>DEFINITION</u>: A system S_1 , S_2 , ..., S_r of sequences of strictly increasing positive integers is self-generating if the sets $\{S_1\}$, $\{S_2\}$, ..., $\{S_r\}$ partition $Z^+ = \{1, 2, 3, \ldots\}$ and there is an $r \times r$ matrix (d_{hk}) with positive integral entries such that

$$\Delta S_h = d_{h1}(\chi S_1) + d_{h2}(\chi S_2) + \cdots + d_{hr}(\chi S_r) \quad \text{for } 1 \leq h \leq r.$$

Hoggatt and Hillman in [2] and [3] used shift functions based on certain linear homogeneous recursions to obtain self-generating systems. In Theorem 5 of Section 7 below, we generalize on their work by increasing the set of recursions for which similar results follow. Examples are given in Section 8.

1. THE RECURSIVE SEQUENCE \dot{U}

In the following, d and p_1 , p_2 , ..., p_d are fixed integers with $d \ge 2$ and $p_1 \ge p_2 \ge \cdots \ge p_{d-1} \ge p_d = 1$. Also u_n is defined for all integers n by initial conditions

$$u_1 = 1, \ u_0 = u_{-1} = u_{-2} = \cdots = u_{2-d} = 0$$
 (1)

and the recursion

$$u_{n+d} = p_1 u_{n+d-1} + p_2 u_{n+d-2} + \cdots + p_d u_n.$$
 (2)

For each integer i, let U_i denote the sequence u_{i+1} , u_{i+2} , ... and let U_0 be written as U.

Hoggatt and Hillman obtained self-generating systems using such recursions for the case d = 2 in [3] and for general d with p_1 = p_2 = \cdots = p_d = 1 in [2].

In the representations discussed below, we want U to be an increasing sequence of positive integers with 1 as the first term. This is clearly true when $p_1 > 1$. If $p_1 = 1$, then $u_1 = u_2 = 1$ and one of these terms must be deleted; this is equivalent to changing the initial conditions (1) to the conditions $u_h = 2^{h-1}$ for $1 \le h \le d$ of [2]. Since the case $p_1 = 1$ is that of [2], we avoid notational complications by assuming that $p_1 > 1$ in what follows.

The representations introduced next are similar to those of the papers in the special January 1972 issue of this Quarterly as well as those of [2] and [3].

2. CANONICAL REPRESENTATIONS

Let $\mathbb{N}=\{0,\ 1,\ 2,\ \ldots\}$. If $\mathbb{X}=x_1,\ x_2,\ \ldots$ and $\mathbb{Y}=y_1,\ y_2,\ \ldots$ are sequences of numbers with $x_n=0$ for n>h, let

$$X \cdot Y = x_1 y_1 + x_2 y_2 + \cdots + x_h y_h.$$

In this section the only properties of $U=u_1,\ u_2,\ \dots$ needed are $u_1=1$ and the fact that U is an increasing sequence of integers.

With respect to U, we define inductively for each m in \mathbb{N} a sequence $E_m = e_{m1}, e_{m2}, \ldots$ of nonnegative integers as follows. Let all the terms of E_0 be zero. Assume that E_h has been defined for $0 \le h \le m$. Since the u_n are unbounded and $u_1 = 1 \le m$, there is a largest k such that $u_k \le m$. For this k, let $t = m - u_k$. Then E_t is defined, and we let $e_{mk} = 1 + e_{tk}$ and $e_{mn} = e_{tn}$ for $n \ne k$. Clearly $E_m \cdot U = m$, i.e., we have the representation

$$m = e_{m1}u_1 + e_{m2}u_2 + \cdots . (3)$$

It is also clear that when $m = u_k$ with $k \ge 1$, $e_{mk} = 1$ and $e_{ms} = 0$ for $s \ne k$.

For $n \geq 2$, let q_n and r_n be the integers (guaranteed by the division algorithm) such that

$$m - (e_{m,n+1}u_{n+1} + e_{m,n+2}u_{n+2} + \cdots) = q_nu_n + r_n, \quad 0 \le r_n < u_n.$$

Then the definition of \mathcal{E}_{m} implies that

$$q_n = e_{mn}$$
 and $r_n = e_{m1}u_1 + e_{m2}u_2 + \cdots + e_{m,n-1}u_{n-1}$.

Hence

$$e_{m1}u_1 + e_{m2}u_2 + \dots + e_{m-n-1}u_{n-1} \le u_n \text{ for } n \ge 2.$$
 (4)

We next show that (4) and the fact that each $e_{\it mh}$ is a nonnegative integer characterize $E_{\it m}$.

<u>LEMMA 1</u>: Let $E = e_1$, e_2 , ... and $E' = e'_1$, e'_2 , ... be sequences of nonnegative integers with $e_n = 0 = e'_n$ for n greater than some r. Also let

and

$$e_1 u_1 + e_2 u_2 + \dots + e_{n-1} u_{n-1} < u_n$$

$$e_1'u_1 + e_2'u_2 + \cdots + e_{n-1}'u_{n-1} < u_n \text{ for } n \ge 2$$
 (5)

and $E \cdot U = E' \cdot U$. Then E = E'.

<u>PROOF</u>: Since $e_n = 0 = e'_n$ for n > r, $E \neq E'$ implies that there is a largest $n \neq e'_n$, and we let t be this n. Without loss of generality, we let $e_t < e'_t$. Upon deletion of the equal terms in $E \cdot U = E' \cdot U$, we have

$$e_1u_1 + \cdots + e_tu_t = e_1'u_1 + \cdots + e_t'u_t$$
.

Since $u_1 = 1$, this implies that t > 1. Then

$$\begin{aligned} u_t &\leq (e_t' - e_t)u_t = e_t'u_t - e_tu_t \\ &= (e_1u_1 + \dots + e_{t-1}u_{t-1}) - (e_1'u_1 + \dots + e_{t-1}'u_{t-1}). \end{aligned}$$

Since each $e_n' \ge 0$, this implies that

$$u_t \leq e_1 u_1 + \cdots + e_{t-1} u_{t-1},$$

contradicting (5) and proving that E = E'.

The following definition introduces another characteristic property of the \boldsymbol{E}_m which will be needed below.

<u>DEFINITION</u>: A sequence $E = e_1$, e_2 , ... is *compatible* [with respect to the recursion (2)] if, for any h in Z^+ and any integer k with $1 \le k \le d$, the sequence of k differences

$$p_1 - e_{h+k-1}, p_2 - e_{h+k-2}, \dots, p_k - e_h$$
 (6)

has the two following properties:

- I. If h = 1 or k = d, at least one difference in (6) is nonzero.
- II. If some difference in (6) is nonzero, the first nonzero difference is positive.

<u>THEOREM 1</u>: For each m in \mathbb{Z}^+ , \mathbb{E}_m is compatible. Also if $\mathbb{E}=e_1$, e_2 , ... is a compatible sequence with $e_n=0$ for n greater than some n_0 and $\mathbb{E} \cdot \mathbb{U}=m$ then $\mathbb{E}=\mathbb{E}_m$.

<u>PROOF:</u> We first show that E_m is compatible. Let $E=E_m$. If h=1 or k=d and all the differences in (6) were zero, then it would follow from (1) and (2) that

$$u_{h+k} = e_{h+k-1}u_{h+k-1} + e_{h+k-2}u_{h+k-2} + \cdots + e_hu_h.$$

Since this would contradict (4), we have shown than I holds.

To prove II, we assume it false and seek a contradiction. Then we can assume that in (6) the first nonzero difference is p_g - e_{h+k-g} and also that $e_{h+k-g} \geqslant 1 + p_g$. These assumptions would imply

$$\sum_{j=h}^{h+k-1} e_j \, u_j \, \geq \, \sum_{j=h+k-g}^{h+k-1} e_j \, u_j \, \geq \, u_{h+k-g} \, + \, \sum_{j=1}^g p_j \, u_{h+k-j} \, .$$

Here, if one uses the recursion (2) to replace u_{h+k-g} by $\sum_{j=1}^d p_j u_{h+k-g-j}$, one finds, since $p_1 \ge p_2 \ge \cdots \ge p_d$, that

$$\begin{split} \sum_{j=h}^{h+k-1} e_j \, u_j & \geq \sum_{j=1}^d p_j \, u_{h+k-g-j} + \sum_{j=1}^g p_j \, u_{h+k-j} \\ & \geq \sum_{j=q+1}^d p_j \, u_{h+k-j} + \sum_{j=1}^g p_j \, u_{h+k-j} = u_{h+k}. \end{split}$$

This contradicts (4), and thus II holds, and E_m is compatible.

Second, assume that E is compatible, the desired n_0 exists, and $E \cdot U = m$. It suffices to show that $u_n > e_1u_1 + e_2u_2 + \cdots + e_{n-1}u_{n-1}$ for $n \ge 2$, since this, the hypothesis $E \cdot U = m$, (4), and Lemma 1 imply that $E = E_m$. We prove these inequalities by induction on n. The hypotheses I and II with h = 1 = k imply that $p_1 > e_1$. Hence, $u_2 = p_1 > e_1 = e_1u_1$, and the case n = 2 is true. Assume that n > 2 and that the desired inequalities are true for 2, 3, ..., n - 1. Using I and II, one finds a k in $\{1, 2, \ldots, d\}$ such that

$$p_k \ge 1 + e_{n-k}$$
 and $p_j = e_{n-j}$ for $1 \le j \le k$. (7)

Using the hypothesis of the induction and n - k < n, one has

$$u_{n-k} > \sum_{j=1}^{n-k-1} e_j u_j.$$
 (8)

Using (2), (7), and (8), one sees that

$$u_n = \sum_{j=1}^{d} p_j u_{n-j} \geqslant u_{n-k} + \sum_{j=1}^{k} e_{n-j} u_{n-j} > \sum_{j=1}^{n-k-1} e_j u_j + \sum_{j=1}^{k} e_{n-j} u_{n-j} = \sum_{j=1}^{n-1} e_j u_j.$$

This establishes the desired inequality for n and completes the proof of the theorem.

LEMMA 2: Let
$$k \ge 1$$
, $w = u_k$. Also define the sequence $F = f_1$, f_2 , ... by $f_1 = p_r - 1$, where $r \in \{1, 2, ..., d\}$ and $r = k - 1 \pmod{d}$;

$$f_n = 0$$
 for $n \ge k$;

$$f_n = 0$$
 for $n \equiv k \pmod{d}$;

$$f_n = p_j$$
 when $k - n \equiv j \pmod{d}$, $1 < n < k$, and $n \not\equiv k \pmod{d}$.

Then $E_{w-1} = F$.

<u>PROOF</u>: Obviously F is compatible. Since p_d = 1, repeated use of (2) gives

$$u_z = u_{z-qd} + \sum_{h=0}^{q-1} \sum_{k=1}^{d-1} p_k u_{z-hd-k} \text{ for } q \in Z^+.$$
 (9)

Now let $q \in \mathbb{N}$, $r \in \{1, 2, ..., d\}$, and z = qd + r + 1. Then

$$u_{z-qd} = u_{r+1} = p_1 u_r + p_2 u_{r-1} + \cdots + p_r u_1$$

follows from (2). Hence, (9) can be rewritten as

$$u_{z} = u_{qd+r+1} = \sum_{k=0}^{q-1} \sum_{k=1}^{d-1} p_{k} u_{z-hd-k} + \sum_{k=1}^{r} p_{k} u_{r+1-k}.$$
 (10)

Now, $F \cdot U = w - 1$ follows from (10), and then Theorem 1 gives us the desired $E_{w-1} = F$.

3. PARTITIONING Z^+

Let $m \in Z^+$. Then $e_{mk} \neq 0$ for some k and we define z_m as follows: if $e_{m1} > 0$, $z_m = 1$, and if $e_{m1} = 0$, then z_m is the largest h such that $e_{ms} = 0$ for $1 \leq s \leq h$. For $1 \leq t \leq d$, let $V_t = \{m : z_m \equiv t \pmod{d}\}$. Clearly, V_1 , V_2 , ..., V_d form a partitioning of Z^+ .

4. THE SHIFT FUNCTIONS σ^i

Let Z be the set of all integers. Recall that U_i denotes the sequence $u_{i+1},\ u_{i+2},\ \dots$. For each i in Z, let σ^i be the function from $\mathbb N$ to Z with

$$\sigma^{i}(m) = E_{m} \cdot U_{i} = e_{m1}u_{i+1} + e_{m2}u_{i+2} + \cdots$$
 for all m in N .

The following properties are easy to verify:

- (i) $\sigma^i(m)$ satisfies the recursion (2) for fixed m in $\mathbb N$ and varying i.
- (ii) $\sigma^i(0) = 0$ for all i in Z.
- (iii) $\sigma^{i}(u_{k}) = u_{k+i}$ for i in Z and k in Z^{+} .
- (iv) $\sigma^{i+1}(m) = \sigma(\sigma^{i}(m))$ for m and i in N. The proof of this depends on

the fact that the canonical representation of $\sigma^i(\mathbf{m})$ is, in fact, $\mathbf{E}_{\mathbf{m}}$ shifted i times.

(v) $\sigma^0(m) = m \text{ for } m \text{ in } N.$

5. DIFFERENCING σ^i

For i in Z and m in Z^+ , let the backward difference $\nabla \sigma^i(m)$ be defined by

$$\nabla \sigma^{i}(m) = \sigma^{i}(m) - \sigma^{i}(m-1) = E_{m} \cdot U_{i} - E_{m-1} \cdot U_{i}.$$

For i in Z and n in Z^+ , let $D_{in} = \nabla \sigma^i(u_n)$. If $u_n = w$, then $E_w = e_1, e_2, \ldots$ with $e_n = 1$ and $e_t = 0$ for $t \neq n$ and $E_{w-1} = f_1, f_2, \ldots, f_{n-1}, 0, 0, \ldots$ with the f_j as described in Lemma 2. Then

$$D_{in} = u_{i+n} - \sum_{j=1}^{n-1} f_j u_{i+j}.$$

Let $n \equiv k \pmod{d}$ with k in $\{1, 2, \ldots, d\}$. Temporarily, let $i \geq 2$. Then, using (10) with z = i + n, the formulas of Lemma 2 for the f_j , and the recursion (2), one finds that

$$D_{in} = u_{i+1} \quad \text{if } k = 1, \tag{11}$$

and if $k \neq 1$,

$$D_{in} = u_{i+1} + p_k u_i + p_{k+1} u_{i-1} + \dots + p_d u_{i+k-d}$$

$$= u_{i+1} + u_{i+k} - p_1 u_{i+k-1} - \dots - p_{k-1} u_{i+1}.$$
(12)

For fixed n and varying i, the D_{in} satisfy the same recursion (2) as the u's. Hence, the truth of (11) and (12) for $i \ge 2$ implies these formulas for all integers i. In particular, these formulas imply the following lemma.

<u>LEMMA 3</u>: $D_{in} = D_{ik}$ if $n \equiv k \pmod{d}$.

Next we show that $\nabla \sigma^i(m)$ depends only on i and the k such that $m \in V_k$.

THEOREM 2: Let $m \in V_k$. Then $\nabla \sigma^i(m) = D_{ik}$.

<u>PROOF</u>: Let $E_m = e_1$, e_2 , Since $m \in V_k$, there is a positive integer z such that $z \equiv k \pmod{d}$, $e_z > 0$, and $e_s = 0$ for $1 \le s \le z$. Let $w = e_z$ and $E_{w-1} = f_1$, f_2 , ..., f_{z-1} , 0, 0, Using Theorem 1, one finds that

$$E_{m-1} = f_1, f_2, \ldots, f_{z-1}, e_z - 1, e_{z+1}, e_{z+2}, \ldots$$

and hence,

$$\nabla \sigma^{i}(m) = E_{m} \cdot U_{i} - E_{m-1} \cdot U_{i} = D_{iz}.$$

Then Lemma 3 implies that $\nabla \sigma^{i}(m) = D_{ik}$ as desired.

The two following results are not needed for the main theorem (Theorem 5 below) but they generalize on work of [2] and [3].

LEMMA 4: For $1 \le i \le d$, $\nabla \sigma^{-i}(m)$ is 1 for m in V_{i+1} and is 0 otherwise.

PROOF: Temporarily, let $k \neq 1$. By Theorem 2 and (12), for m in V_k ,

$$\nabla \sigma^{-i}(m) = u_{k-i} - p_1 u_{k-i-1} - \dots - p_{k-1} u_{-i+1} + u_{-i+1}$$

$$= (u_{k-i} - p_1 u_{k-i-1} - \dots - p_{k-i} u_0) - p_{k-i+1} u_{-1} - \dots$$

$$- p_{k-1} u_{-i+1} + u_{-i+1}.$$

For k = i + 1, this becomes

 $\nabla \sigma^{-i}(m) = u_1 - p_1 u_0 - p_2 u_{-1} - \dots - p_i u_{-i+1} + u_{-i+1} = u_1 = 1,$

since

$$u_0 = u_{-1} = \cdots = u_{2-d} = 0.$$

For $k \neq i + 1$, i.e., for m not in V_k , $\nabla \sigma^{-i}(m) = 0$, since

$$u_{k-i} = p_1 u_{k-i-1} + \cdots + p_{k-i} u_0$$

by (1) and (2). The same results are obtained for k = 1 from (11).

THEOREM 3: Let |S| denote the number of elements in the set S. Then

(i)
$$\sigma^{-i}(m) = |V_{i+1} \cap \{1, 2, ..., m\}| \text{ for } i = 1, 2, ..., d-1.$$

(ii)
$$m - \sigma^{-1}(m) - \sigma^{-2}(m) - \dots - \sigma^{-(d-1)}(m) = |V_1 \cap \{1, 2, \dots, m\}|$$
.

PROOF: For (i),

$$\nabla \sigma^{-i}(1) + \nabla \sigma^{-i}(2) + \dots + \nabla \sigma^{-i}(m) = [\sigma^{-i}(1) - \sigma^{-i}(0)] + [\sigma^{-i}(2) - \sigma^{-i}(1)]$$

$$+ \dots + [\sigma^{-i}(m) - \sigma^{-i}(m) - \sigma^{-i}(m)]$$

$$= \sigma^{-i}(m) - \sigma^{-i}(0) = \sigma^{-i}(m).$$

For fixed i, by Lemma 4, $\nabla \sigma^{-i}(1) + \cdots + \nabla \sigma^{-i}(m)$ is the number of integers in $V_{i+1} \cap \{1, 2, \ldots, m\}$. But the telescoping sum shows this to be $\sigma^{-i}(m)$. Part (ii) follows from (i).

6. A PARTITIONING OF N

For $i=1,\,2,\,\ldots,\,d$ and $j=0,\,1,\,\ldots,\,p_i-1,\, {\rm let}\,\,B_{ij}$ be the sequence $b_0,\,b_1,\,\ldots$ with $b_m=u_{i+1}+j-p_i+\sigma^i(m)$. When the dependence of b_m on i and j has to be indicated, we will write b_m as $b_{ij\,m}$.

THEOREM 4: The $p_1 + p_2 + \cdots + p_d$ subsets $\{B_{ij}\}$ partition N.

<u>PROOF:</u> Let $s \in \mathbb{N}$. We need to show that there is a unique ordered triple (i,j,m) such that

$$s = u_{i+1} + j - p_i + \sigma^i(m). \tag{13}$$

Let $E_s = e_1$, e_2 , ... and for the sought after m, let $E_m = f_1$, f_2 , ..., i.e., let $e_{sk} = e_k$ and $e_{mk} = f_k$. With this notation and using (1) and (2), one can rewrite (13) as

$$s = p_1 u_i + p_2 u_{i-1} + \cdots + p_{i-1} u_2 + p_i u_1 + j - p_i + f_1 u_{i+1} + f_2 u_{i+2} + \cdots$$

Since $u_1 = 1$, $p_i u_1 + j - p_i = ju_1$ and the equation takes the form

$$s = ju_1 + p_{i-1}u_2 + p_{i-2}u_3 + \dots + p_1u_i + f_1u_{i+1} + f_2u_{i+2} + \dots$$
 (14)

Using the condition of Theorem 1 that $E_{\rm m}=f_{\rm l}$, $f_{\rm 2}$, ... must be compatible, together with the fact that $j\leqslant p_i$ - 1, one sees that the sequence

$$S = j, p_{i-1}, p_{i-2}, \dots, p_1, f_1, f_2, \dots$$

must be compatible. Since the right side of (14) is $S \cdot U$, Theorem 1 (with m replaced by s) tells us that (13) is equivalent to $S = E_s$.

If there is no i with $2 \le i \le d$ and

$$(p_1, p_2, \dots, p_{i-1}) = (e_i, e_{i-1}, \dots, e_2)$$
 (15)

then the sequence e_2 , e_3 , ... is compatible and E_s = S holds if and only if i = 1, j = e_1 , and the sequence e_2 , e_3 , ... is the sequence f_1 , f_2 , ...

Now assume that (15) holds for some i in $\{2, 3, ..., d\}$ but not for any larger integer in this set. We wish to show that the sequence

$$e_{i+1}, e_{i+2}, \dots$$
 (16)

is compatible. Since e_1 , e_2 , ... is compatible, (16) can fail to be compatible only if there is an integer g with

$$(p_1, p_2, \ldots, p_g) = (e_{i+g}, e_{i+g-1}, \ldots, e_{i+1}) \text{ and } i \leq g < d.$$
 (17)

Then condition II (of the definition of a compatible sequence) with h=i and

k=1+g would imply that $e_i\leqslant p_{g+1}.$ If $e_i< p_{g+1}$, (15) gives us the contradiction $p_1=e_i< p_{g+1}\leqslant p_1.$ Now condition I implies that g+1< d. Also $e_i=p_{g+1}$ similarly implies that $p_1=p_2=\cdots=p_{g+1}.$ This, (17), and the equality $p_1=e_i$ from (15) would give us

$$(p_1, p_2, \ldots, p_{g+1}) = (e_{i+g}, e_{i+g-1}, \ldots, e_i).$$

As before, condition II with h=i-1 and k=2+g implies that $p_{g+2}=p_1$, and hence that

$$(p_1, p_2, \ldots, p_{q+2}) = (e_{i+q}, e_{i+q-1}, \ldots, e_{i-1}).$$

This process would continue until we had

$$(p_1, p_2, \ldots, p_{i+q-1}) = (e_{i+q}, e_{i+q-1}, \ldots, e_2),$$

which contradicts the fact that the i in (15) is maximal.

Hence e_{i+1} , e_{i+2} ,... satisfies I and II and so is compatible. Then $E_s=S$ holds if and only if i is the maximal i for (15), $j=e_1$, and

$$f_1, f_2, \ldots = e_{i+1}, e_{i+2}, \ldots$$

This completes the proof.

7. SELF-GENERATING SYSTEM

For $i = 1, 2, \ldots, d$ and $j = 1, 2, \ldots, p_i$, let A_{ij} be the sequence

$$a_{i,j1}$$
, $a_{i,j2}$, ...

with $a_{ijm} = 1 + b_{i,j-1,m-1}$ (the b's are as in Section 6). When both i and j are known from the context, we may write a_{ijm} as a_m .

<u>THEOREM 5</u>: The sequences A_{ij} for $1 \le i \le d$ and $1 \le j \le p_i$ form a self-generating system.

<u>PROOF</u>: From the definition of the sets $\{B_{i,j-1}\}$ in Section 6 and V_k in Section 3, it follows that

$$V_1 = \{A_{d,1}\} \cup T, \tag{18}$$

where T is the union of the $\{A_{ij}\}$ for $1 \le i < d$ and $1 \le j < p_i$, and that

$$V_{h+1} = \{A_{h, p_h}\}$$
 for $h = 1, 2, ..., d-1$.

Since the $\{B_{ij}\}$ form a partition of N (or, equivalently, since the V's partition Z^+), the $\{A_{ij}\}$ partition Z^+ . Since $b_{ijm}=u_{i+1}+j-p_i+\sigma^i(m)$,

$$\nabla b_{ijm} = b_{i,j,m} - b_{i,j,m-1} = (u_{i+1} + j - p_i + \sigma^i(m)) - (u_{i+1} + j - p_i + \sigma^i(m-1))$$

$$= \sigma^i(m) - \sigma^i(m-1) =$$

$$= \nabla \sigma^i(m).$$

Then by Theorem 2 we have

$$\nabla b_{ijm} = \nabla \sigma^{i}(m) = D_{ik} \text{ if } m \in V_{k}.$$

Since a_{ijm} = 1 + $b_{i,j-1,m-1}$, ΔA_{ij} is the sequence d_1 , d_2 , ... with

$$d_m = a_{i,j,m+1} - a_{i,j,m} = b_{i,j-1,m} - b_{i,j-1,m-1} = D_{ik}$$

when $m \in V_k$. Since each V_k is an $\{A_{ij}\}$ or a union of $\{A_{ij}\}$,

$$\Delta A_{ij} = \sum_{\substack{1 \le h \le d \\ 1 \le k \le p,}} d_{ijhk} \chi A_{hk}$$

where d_{ijhk} = D_{is} when $\{A_{hk}\}$ is a subset of V_s .

8. EXAMPLE

For d=3 and $p_1=p_2=3$, $p_3=1$, we have $u_{n+3}=3u_{n+2}+3u_{n+1}+u_n$ and U=1, 3, 12, 46, 177,.... As an illustration of the canonical representation in Section 1, for m=136, we have $E_m=2$, 2, 3, 2, 0, 0,... and $\sigma(m)=2u_2+2u_3+3u_4+2u_5=522$. The following is a table of the $\sigma^i(m)$ for the i's involved in Theorem 5.

m	0	1	2	3	4	5	6	7	8	9	10	11	12
o(m)	0	3	6	12	15	18	24	27	30	36	39	42	46
σ^2 (m)	0	12	24	46	58	70	92	104	116	138	150	162	177
σ^3 (m)	0	46	92	177	223	269	354						

The $p_1 + p_2 + p_3 = 7$ subsets partitioning Z^+ are:

$$\{A_{11}\} = \{\sigma(m) + 1\} = \{1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 40, \ldots\}$$

$$\{A_{12}\} = \{\sigma(m) + 2\} = \{2, 5, 8, 14, 17, 20, 26, 29, 32, 38, 41, \ldots\}$$

$$\{A_{13}\} = \{\sigma(m) + 3\} = \{3, 6, 9, 15, 18, 21, 27, 30, 33, 39, 42, \ldots\}$$

$$\{A_{21}\} = \{\sigma^2(m) + 10\} = \{10, 22, 34, 56, 68, 80, 102, \ldots\}$$

$$\{A_{22}\} = \{\sigma^2(m) + 11\} = \{11, 23, 35, 57, 69, 81, 103, \ldots\}$$

$$\{A_{23}\} = \{\sigma^2(m) + 12\} = \{12, 24, 36, 58, 70, 82, 104, \ldots\}$$

and

$$\{A_{31}\} = \{\sigma^3(m) + 46\} = \{46, 92, 138, 223, \ldots\}.$$

The following is a table of D_{ik} for $-2 \le i \le 3$ and $1 \le k \le 3$.

k^{i}	-2	-1	0	1	2	3	
1	0	0	1	3	12	46	
2	0	1	1	6	22	85	
3	1	0	1	4	15	58	

Since $V_1 = A_{11} \cup A_{12} \cup A_{21} \cup A_{22} \cup A_{31}$, $V_2 = A_{13}$, and $V_3 = A_{23}$, we have

$$\begin{split} \Delta A_{1j} &= D_{11}(\chi A_{11}) \; + \; D_{11}(\chi A_{12}) \; + \; D_{12}(\chi A_{13}) \; + \; D_{11}(\chi A_{21}) \\ &+ \; D_{11}(\chi A_{22}) \; + \; D_{13}(\chi A_{23}) \; + \; D_{11}(\chi A_{31}) \end{split}$$

$$\begin{split} \Delta A_{2j} &= D_{21}(\chi A_{11}) + D_{21}(\chi A_{12}) + D_{22}(\chi A_{13}) + D_{21}(\chi A_{21}) \\ &+ D_{21}(\chi A_{22}) + D_{23}(\chi A_{23}) + D_{21}(\chi A_{31}) \end{split}$$

$$\Delta A_{3j} = D_{31}(\chi A_{11}) + D_{31}(\chi A_{12}) + D_{32}(\chi A_{13}) + D_{31}(\chi A_{21}) + D_{31}(\chi A_{22}) + D_{33}(\chi A_{23}) + D_{31}(\chi A_{31})$$

and the 7×7 matrix (d_{hk}) for the self-generating system A_{11} , A_{12} , A_{13} , A_{21} , A_{22} , A_{23} , A_{31} is

$$\begin{pmatrix} 3 & 3 & 6 & 3 & 3 & 4 & 3 \\ 3 & 3 & 6 & 3 & 3 & 4 & 3 \\ 3 & 3 & 6 & 3 & 3 & 4 & 3 \\ 12 & 12 & 22 & 12 & 12 & 15 & 12 \\ 12 & 12 & 22 & 12 & 12 & 15 & 12 \\ 12 & 12 & 22 & 12 & 12 & 15 & 12 \\ 46 & 46 & 85 & 46 & 46 & 58 & 46 \end{pmatrix}$$

As an illustration of Theorem 3(i), with i = 1 and m = 20,

$$\sigma^{-1}(20) = \sigma^{2}(20) - 3\sigma(20) - 3\sigma^{0}(20)$$

$$= 2u_{3} + 2u_{4} + u_{5} - 3(2u_{2} + 2u_{3} + u_{4}) - 60$$

$$= 5 = |V_{2} \cap \{1, 2, ..., 20\}|,$$

where $V_2 = \{n: z_n \equiv 2 \pmod 3\} = \{3, 6, 9, 15, 18\}$ since the only sequences E_n , with $n \le 20$ and $z_n \equiv 2 \pmod 3$ are:

$$E_3 = 0, 1, 0, 0, \dots$$

 $E_6 = 0, 2, 0, 0, \dots$
 $E_9 = 0, 3, 0, 0, \dots$
 $E_{15} = 0, 1, 1, 0, \dots$
 $E_{18} = 0, 2, 1, 0, \dots$

REFERENCES

- 1. L. Carlitz, Richard Scoville, & V. E. Hoggatt, Jr. "Fibonacci Representations." The Fibonacci Quarterly 10, No. 1 (1972):29-42.
- 2. V. E. Hoggatt, Jr., & A. P. Hillman. "Nearly Linear Functions." The Fibonacci Quarterly 17, No. 1 (1979):84-89.
- 3. V. E. Hoggatt, Jr., & A. P. Hillman. "Recursive, Spectral, and Self-Generating Sequences." *The Fibonacci Quarterly* 18, No. 2 (1980):97-103.
- 4. See the special issue of *The Fibonacci Quarterly* (Vol. 10, No. 1 [1972]) on Representations.
