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Let S = ay, ays «..5and T = by, b,, ... be sequences of integers, and let
g be an integer. Then gS and S + T denote the sequences ga;, ga,, ... and
ay + by, a + by, ..., respectively. Also {S} denotes the set {a;, ass ...}.

If the a, of S are positive and strictly increasing, the characteristic
sequence XS = €31, C3, ... has ¢, = 1 when n is in {S} and e, = 0 otherwise.
Also AS denotes the sequence d,, d,s ... with d, = a,,; - a,.

DEFINITION: A system Si, Sy, ...5 S, 0f sequences of strictly increasing pos-
itive integers is self-generating if the sets {S:1}, {S»}, ..., {S,»} partition
z* =1{1, 2, 3, ...} and there is an rxr matrix (d,,) with positive integral
entries such that

ASh = dhl(xsl) + th(XSZ) + e+ dhr(XSI') for 1 < h < r.
Hoggatt and Hillman in [2] and [3] used shift functions based on certain
linear homogeneous recursions to obtain self-generating systems. In Theorem

5 of Section 7 below, we generalize on their work by increasing the set of
recursions for which similar results follow. Examples are given in Section 8.

1. THE RECURSIVE SEQUENCE U

In the following, d and p;, p,s ..., p; are fixed integers with d > 2 and
P12 Py 2 2 P41 2 p; = 1. Also u, is defined for all integers » by ini-
tial conditions

up =l ug=u,=u,="°""=u, ;=0 (N
and the recursion

Upnsg = p1“’71+d—1 + pzun+d—2 oo + pdun' (2)

For each integer %, let U; denote the sequence u;,,, U;,,> ... and let U, be
written as U.

Hoggatt and Hillman obtained self-generating systems using such recur-
sions for the case d = 2 in [3] and for general d with p; =p, =--- = p; = 1
in [2].
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In the representations discussed below, we want U to be an increasing
sequence of positive integers with 1 as the first term. This is clearly true
when p, > 1. If p; =1, then %3 = u, = 1 and one of these terms must be de-
leted; this is equivalent to changing the initial conditions (1) to the con-
ditions u, = 2""1 for 1<h<d of [2]. Since the case p1 = 1 is that of [2],
we avoid notational complications by assuming that p; > 1 in what follows.

The representations introduced next are similar to those of the papers in
the special January 1972 issue of this Quarterly as well as those of [2] and

[3].

2. CANONICAL REPRESENTATIONS

Let ¥ = {0, 1, 2, ...}, IfX=uxy, 2y, ... and Y = y;, Y,5 ... are se-
quences of numbers with x, = 0 for n > h, let

X oY =xy, +axy, + -0 +x,y,.
In this section the only properties of U = u;, %4y, ... needed are u; = 1 and
the fact that U is an increasing sequence of integers.

With respect to U, we define inductively for each m in N a sequence E, =
€n1s €pas -+ Of nonnegative integers as follows. Let all the terms of F, be
zero. Assume that FE, has been defined for 0 < 2 < m. Since the u, are un-
bounded and u#; = 1 < m, there is a largest k such that u; < m. For this k,
let © =m - ug. Then E; is defined, and we let e,z = 1 + e;x and e,, = ¢4y,
for n # k. Clearly E, * U =m, i.e., we have the representation

m=e u, +e u, + - . (3)
It is also clear that when m = u, with k > 1, e,; = 1 and ¢,, = 0 for s # k.

For n 2 2, let q, and r, be the integers (guaranteed by the division al-
gorithm) such that

m = (em,n+1un+1 + Cnn+2Un+n T = quu, 0<r, <u,.
Then the definition of E, implies that
dn = €mn and r, = emiy t e,oUy t..-+ Cnyn-1Un-1-
Hence
epithy + Uy +o0e e, qu, y <u, forn 2> 2. (4)

We next show that (4) and the fact that each e,; is a nonnegative integer
characterize E,.

LEMMA 1: Let E =e;, e,,...and E' = e], eJ, ... be sequences of nonnegative
integers with e, = 0 = e for n greater than some r. Also let
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ejuy +eu, + 00 te qu, o <u,
and
equ, teju, + .- +e! u , <u, forn>2 (5)

and E « U =FE'" « U. ThenE =FE'.
PROOF: Since ¢, = 0 = ¢, for n > r, E # E' implies that there is a largest #
with e, # e, and we let t be this n. Without loss of generality, we let
e, < e/. Upon deletion of the equal terms in £ « U = E' « U, we have
ey + e +oeguy = ejuy + oo+ efu,.
Since u; = 1, this implies that ¢ > 1. Then
u, < (el - eduy = elu, - egu,
= (equy + +o0 + e, qupy) - (equy + o0+ el ju, ).
Since each ¢, 2 0, this implies that
Up S eqUy + so0 + e, U1

contradicting (5) and proving that F = E'.

The following definition introduces another characteristic property of

the F,, which will be needed below.

DEFINITION: A sequence E = e, @,, ... is compatible [with respect to the
recursion (2)] if, for any % in Z* and any integer kX with 1 < k < d, the se-
quence of k differences

P1 = Gusr-12 P2 7 Ghk-p2 o0 Py T & (6)
has the two following properties:
I. If =1 or k = d, at least one difference in (6) is nonzero.
II. If some difference in (6) is nonzero, the first nonzero difference

is positive.

THEOREM 1: For each m in 2%, E, is compatible. Also if F = ey, €,, ... 15 a
compatible sequence with e, =0 for n greater than some n, and E* U = m then
E =E,.

PROOF: We first show that E, is compatible. Let E = E,. If h=1or k =4d
and all the differences in (6) were zero, then it would follow from (1) and
(2) that

Up+k = Chak-1Un+k-1 T Epak-2Unsk-2 T =+ + u,.
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Since this would contradict (4), we have shown than I holds.

To prove II, we assume it false and seek a contradiction. Then we can
assume that in (6) the first nonzero difference is Py = Chik-g and also that
Chik-g 21+ Py - These assumptions would imply

h+ k-1 h+k-1 g
z €ju; > . Z eju; 2 Upsk-g T ij Upspp-j*
j=h j=h+k-g J=1
d
Here, if one uses the recursion (2) to replace u;,.;_, by > PiUpsk-g-z° ODE
finds, since p, 2 p, 2 ++- 2 p,, that J=1
h+ k-1 4 g
2 ety 2 L PiUnygog-;t 2 Di%hyk-j
j=h J= Jj=1

d g
> X Dithar-jt 2 PiUniio; = Unage
J=g+1 j=1

This contradicts (4), and thus II holds, and E, is compatible.

Second, assume that F is compatible, the desired n,; exists, and F+« U = m.
It suffices to show that u, > e u; +e,u, + --- + e, yu, ; for n 2= 2, since
this, the hypothesis E+U =m, (4), and Lemma 1 imply that F = E,. We prove
these inequalities by induction on »n. The hypotheses I and II with # =1 = k
imply that p, > e;. Hence, U, = p; > ey = eju;, and the case n = 2 is true.
Assume that n > 2 and that the desired inequalities are true for 2, 3, ...,
n - 1. Using I and II, one finds a k in {1, 2, ..., d} such that

p, 21 +e,x and p; =e,-; forl < g <k. @
Using the hypothesis of the induction and n - k < »n, one has

n-k-1
TR YT ®)
i=1

Using (2), (7), and (8), one sees that

d k n-k-1 k n-1

= . ‘“ . . . . = . .

Uy, }E Diln-j 2 Un-t + 2, Cnjlin_j > 3, €;u; + 2: Cne jUn- 2: e;juj.
.J=1 Ji=1 i=1 Jg=1 Jj=1

This establishes the desired inequality for n and completes the proof of the
theorem.

LEMMA 2: Let k 2 1, w = u,. Also define the sequence F = f;, f,, ... by

fi=p, -1, where r € {1, 2, ..., dt and r = k - 1 (mod d);
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]

fa =0 forn 2 k;

fn =0 forn = k (mod d);

Fa

Then E,_, = F.

p; when k ~n =g (mod d), 1 <n <k, and n # k (mod d).

PROOF: Obviously F is compatible. Since p; = 1, repeated use of (2) gives
-1 d-1 . ‘
Uy = Uz gd ¥ 3, 9. PrUy_pg_x f0r q € 27, 9
h=0 k=1
Now let g e N, » € {1, 2, ..., d}, and 2 = gd + » + 1. Then
Upgqd = Upp1 = Prlhy, T PoUp 1 F o0 + DUy

follows from (2). Hence, (9) can be rewritten as

q-1d-1 r
Uy = uqd+r+1 = 2: E: pkuz—hd—k + E; pkur+1-k‘ (10)
h=0 k=1 =1

Now, F « U =w - 1 follows from (10), and then Theorem 1 gives us the desired
E, ., =F.

3. PARTITIONING 2%

Let m € 2¥. Then e, # 0 for some k and we define z, as follows: if
en1 > 0, 3y = 1, and if e,; = 0, then z, is the largest % such that eps = 0
for 1€ g<h. For 1 <t<d, let V; ={m:2, = ¢t (mod d)}. Clearly, Vq,
Vos +v.5 V; form a partitioning of Z*.

4. ‘THE SHIFT FUNCTIONS o?

Let 7 be the set of all integers. Recall that U; denotes the sequence

U For each 7 in 7, let o? be the function from N to Z with

1412 Upano
oi(m) =B, U =e,u, , +e u. , +--- for allminN.

The following properties are easy to verify:

(1) o%(m) satisfies the recursion (2) for fixed m in N and varying <.

(ii) 0?%(0) = 0 for all % in Z.

(1ii) o%(uy) = uy,; for 2 in Z and k in 2.

(iv) Gi+1(m)==0(oi(m)) for m and 7 in N. The proof of this depends on
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the fact that the canonical representation of o®(m) is, in fact, E,
shifted 7 times.

(v) o°@m) =m for m in N.

5. DIFFERENCING ot

For 7 in Z and m in Z%, let the backward difference Vo®(m) be defined by

Voi(m) = ot(m) - o*(m - 1) =E, * Uy = E,_, * U,
For 7 in Z and n in 2%, let D;p, = Voi(u,). If u, = w, then E, = €1, €35 .
with e, = 1 and e, = 0 for t #n and E,_1 = 1, fas .25 fu_ys 0, 0, ... with

the f; as described in Lemma 2. Then
n-1
Dip = Usen = 2, frugss-
J=1

Let n = k (modd) with k in {1, 2, ..., d}. Temporarily, let ©Z = 2. Then,
using (10) with 2 = ¢ + #n, the formulas of Lemma 2 for the fJ ,» and the recur-
sion (2), one finds that

D.. =u

n

1+1

and if k # 1,

D;, Uppg T OU T Dpgpty T o0t +pdu£+k_d

= U, + u (12)

i+1 i+x T Pa%isk-o1 T 00T T P4

For fixed » and varying ©, the D;, satisfy the same recursion (2) as the u's.
Hence, the truth of (11) and (12) for Z 2 2 implies these formulas for all
integers 7. In particular, these formulas imply the following lemma.

LEMMA 3: D, =D, if n = k (mod d).

n

Next we show that Vo’(m) depends only on 7 and the k such that m € V.

THEOREM 2: Let m € V,. Then Vo'(m) = D .
PROOF: Let E, = €1, €35 ... . Sincem e Vi, there is a positive integer z

such that z = k (mod d), e¢5; > 0, and e, =0 for 1 £ s < z. Let w = ¢, and
Ey_1 = Ff1s Fos vves faq5 0, 0, ... . Using Theorem 1, one finds that

Epoy = F1s Fos voes facis ey = 1 e,,00 €545

and hence,
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Vot(m) = E, U, ~E, , * U, =D,,.
Then Lemma 3 implies that Vo®(m) = D;; as desired.
The two following results are not needed for the main theorem (Theorem 5
below) but they generalize on work of [2] and [3].

LEMMA 4: For 1 < 7 <d, Vo~ %(m) is 1 for m in V;,, and is O otherwise.

PROOF: Temporarily, let k¥ # 1. By Theorem 2 and (12), for m in 7,

-1 = P - e s e = +
Vo™ " (m) Ur-i = Pl ;4 Proa¥ pe1 T ¥ i
=y =Pyt Tt T Pgy) T Prgaatay T
= DPpoaliger T U g4
For kK = 7 + 1, this becomes
-i = - — - e e -— = =
VoTtm) = uy = pyty ~ PyUy PiUiger T hogyy = U = 1
since
Uy =u_y = =u, . =0.

For K # 7 + 1, i.e.; for m not in Vy, V6™t (m) = 0, since

Ug_g = Pallgogor T oo T P4

by (1) and (2). The same results are obtained for k = 1 from (11).

THEOREM 3: Let ISI denote the number of elements in the set S. Then
(i) o %@ = |Viu,NnA{l, 2, ..., m}| For i =1, 2, ..., d - 1.

(i) m=-0"tm - 0" m) - oo -7V = v, N {1, 2, ..., m}

PROOF: For (i),

Vo E(1l) + Vo (2) + +-- + VoL (m)

[07%(1) = 07*(0)] + [07%(2) - 07 (1)]
+ e+ [075(m) - 07E(m - 1)]
=07 %m) - 07 (0) = o7 (m).
For fixed 7, by Lemma 4, Vo *(l) +--- + Vo *(m) is the number of integers in

Vie1 N {1, 2, ..., m}. But the telescoping sum shows this to be 0% (m). Part
(ii) follows from (i).
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6. A PARTITIONING OF NV

For 2 =1, 2, ..., d and § =0, 1, ..., p; - 1, let By; be the sequence
bos bys «.. with b, = u;; +J - p; + 0%(m). When the dependence of b, on 7

and j has to be indicated, we will write b, as by;, .

THEOREM 4: The p, + p, + <++ + p, subsets {B;;} partition V.

PROOF: Let s € N. We need to show that there is a unique ordered triple
(Z, J» m) such that

8= Uy, +J - p; + gt(m). (13)
Let E; = ¢4, @,, ... and for the sought after m, let Ep = f1, fo, ..., i.e.,

let egx = ex and eny = fr. With this notation and using (1) and (2), one can
rewrite (13) as

8 = Pathy ¥ Doy 1t oce A ppaty v pguy +F =Pyt frtgen F FoUgy, + o
Since u; =1, p;u; +J - p; = ju, and the equation takes the form
§ = Juy tpyaty Fpypuy bt b pug b frug g g, v (14)

Using the condition of Theorem 1 that E, = f,, f,, ... must be compatible,
together with the fact that J < p;, — 1, one sees that the sequence

S = ja pi_ls pi_zy ooy pls fla fZ’

must be compatible. Since the right side of (l4) is S ° U, Theorem 1 (with m
replaced by s) tells us that (13) is equivalent to S = E;.

If there is no 7 with 2 < Z < d and

(pls st LI ] pi_l) = (eis ei—l’ LI 92) (15)

then the sequence €,5 €35 ... is compatible and F; = 5 holds if and only if
=1, j = e;, and the sequence e,, e;, ... is the sequence f;, f,,

Now assume that (15) holds for some < in {2, 3, ..., d} but not for any
larger integer in this set. We wish to show that the sequence

ei+1, ei+2, PR (16)

is compatible. Since e¢;, €,, ... is compatible, (16) can fail to be compat-
ible only if there is an integer g with

(P15 Pas =vos Pg) = (€44gs @i4gons «+vs €;4,) and 7 < g < d. (17)

Then condition II (of the definition of a compatible sequence) with % = 7 and



1982] SELF-GENERATING SYSTEMS 307

k =1+ g would imply that e, < Pgr1- If e; <pgyys (15) gives us the con-
tradiction p,=e; < pg,; < p;. Now condition I implies that g + 1 < d. Also
€; = Dg4y similarly implies that p; =p, = -+ =p,,,. This, (17), and the

equality p, = e, from (15) would give us

(pl) pz, e e oy pg+1) = (ei+9’ ei+g-1’ LY ei).

As before, condition IT with # =< -1 and k = 2 + g implies that p,,, = p,,
and hence that

Pys Pys - pg+2) = (€445 €ihgo1s wro e, ,)-
This process would continue until we had

(pl’ Pas «vvs pi+g-1) = (ei+g’ Creg-12 "2 82)’
which contradicts the fact that the < in (15) is maximal.

Hence e;,,5 €;,25 ... satisfies I and IT and so is compatible. Then E, =
S holds if and only if ¢ is the maximal 7 for (15), J = e;, and

f1s Fos voe = €1015 €140

This completes the proof.

7. SELF-GENERATING SYSTEM

For ¢ =1, 2, ..., dand § =1, 2, ..., p,, let 4;; be the sequence

aijl’ aijz’

with a;;, =1 + b; j_1,,.1 (the b's are as in Section 6). When both £ and J
are known from the context, we may write a;;, as an.

THEOREM 5: The sequences A;; for 1 < 1< d and 1< j<p, form a self-gen-
erating system.

PROOF: From the definition of the sets {Bi,j—l
tion 3, it follows that

} in Section 6 and ¥, in Sec-

v = 4o, (18)
where T is the union of the {4;;} for 1< ¢ <d and 1 <j<p,, and that
Vier = {4p,p} for A =1, 2, ..., d- 1.

Since the {B;;} form a partition of ¥ (or, equivalently, since the V's
partition Z*), the {4,;} partition Z". Since byjn = Uy +J - p, +0°(m),
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Vb,. = bi,j,m - b,,:,j,m_1=(ui+l +j - pi + Ui(m))— (ui+1 +j—pi + Oi(m—l))

ijm
= g¥(m) - ot(m-1) =
= Vot(m).
Then by Theorem 2 we have
Vbijm = Voi(m) = Dy if m e Vy.

Since a;jm = 1 + by j_1,n-1s M;; is the sequence d;, d,, ... with -

iJ

d, = a - a = b

fhdamt1 Ladem ii-1m~ Pii-1,m-1 = Dix

when m € V. Since each V, is an {4;;} or a union of {4;;},

D = 2 dyjmXhn
1<hgd
1<k<p,

where d;jux = D;; when {4,,} is a subset of V.

8. EXAMPLE

For d = 3 and p; =p, = 3, p; = 1, we have u,3 = 3uU,4, + 3u,.; + u, and
uv=1, 3, 12, 46, 177, ... . As an illustration of the canonical representa-
tion in Section 1, for m = 136, we have E, = 2, 2, 3, 2, 0, 0, ... and o(m) =
2uy + 2uy + 3u, + 2us = 522. The following is a table of the o?(m) for the
1's involved in Theorem 5.

m o 1 2 3 4 5 6 7 8 9 10 11 12

om) 0 3 6 12 15 18 24 27 30 36 39 42 46
a2 (m) 12 24 46 58 70 92 104 116 138 150 162 177
o®(m) 0 46 92 177 223 269 354 ...

o

The p; + p, + p; = 7 subsets partitioning z* are:

{4,,} = {oGm) + 1} = {1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 40, ...}
{4,,} = {o(m) + 2} = {2, 5, 8, 14, 17, 20, 26, 29, 32, 38, 41, ...}
{4,,} = {o(m) + 3} = {3, 6, 9, 15, 18, 21, 27, 30, 33, 39, 42, ...}
{4,,} = {o®(m) + 10} = {10, 22, 34, 56, 68, 80, 102, ...}
{4,,} = {o*(m) + 11} = {11, 23, 35, 57, 69, 81, 103, ...}

]

{4,,} = {0*(m) + 12} = {12, 24, 36, 58, 70, 82, 104, ...}
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and
{45, = {c%m) + 46} = {46, 92, 138, 223, ...}.

The following is a table of D;; for -2 S 2 <3 and 1 € k < 3,

7
Xl-2 -1 0 1 2 3
1, 0 o0 1 3 12 46
2/ 0 1 1 6 22 85
3/ 10 1 4 15 58

Since V; = 4,, U4, UA,; U4,, U4y, V, =4,;, and V; = 4,,, we have
AMy; =Dy (X¥A11) + D33 (A12) + Dy, (Kdp3) + Dy (X457)

+ D31(¥d22) + D13(4,4) + D11 (¥431)

AAZj = D21(XA11) + D, (y,) + Dy, (XAys) + Dyy (X454

+ Dy (X4,,) + Dy (XAy3) + Dyy (XA4,)

Dby

Doy (XA11) + Dyy (XA1,) + Dyy (X414) + Dy Odyy)
+ Dy, 0,50 + Dy (XA,4) + Dy (XA 4,)

and the 7x7 m?trix (duy) for the self-generating system 4,,, 4,,, 4,., 4

A A23, Aal is

21°
22°

3 3 6 3 3 4 3
3 3 6 3 3 4 3
3 3 6 3 3 .4 3
12 12 22 12 12 15 12
12 12 22 12 12 15 12
12 12 22 12 12 15 12
46 46 85 46 46 58 46

As an illustration of Theorem 3(i), with Z = 1 and m = 20,

o71(20) = 02(20) - 30(20) - 3c°(20)

2u, + 2u, +ug - 3(2u, + 2ug + u,) — 60

5=|v, n {1, 2, ..., 20}|,

where V, = {n:z, = 2 (mod 3)} = {3, 6, 9, 15, 18} since the only sequences
E,, with n < 20 and 2z, = 2 (mod 3) are:
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1.

2.

3.

4.
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E, =0, 1,0, 0,
E,=0,2,0,0, ...
E, =0, 3,0, 0,
Eys =0, 1, 1, 0, ...
=0, 2, 1, 0,
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