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1. INTRODUCTION 

Let {un} be a primary Fibonacci-like sequence (PFLS) defined by the re-
cursion relation 

un+2 = aun+1 + buni (1) 

where u0 = 05 U\ - 13 and a and b are integers. We will call a and b the 
parameters of the recurrence. We will denote such a sequence as u(a3 b) . 
Two of the most important questions concerning these sequences are: For a 
given PFLS w(a, 2?), which odd primes have a maximal rank of apparition? and 
For which odd primes does the PFLS u(a5 b) have a maximal period modulo p? 
No definitive results are known for these questions. What we propose to do 
in this paper is to first present the best known results concerning these 
questions. Then we will turn the questions around and fix the odd prime and 
ask which PFLSfs have maximal ranks of apparition and maximal periods with 
respect to that prime. In a previous paper [6]s the author obtained partial 
results by considering only those PFLS's u(a9 b) for which b - 1. 

Before proceeding further9 we will need a few definitions. We will let 
]i(a, b9 p) denote the period of the PFLS u(a, b) reduced modulo p, where p is 
an odd prime. Moreover, a(a5 b\ p) will denote the rank of apparition of p 
in the PFLS u(a9 b). Let s(as b, p) be the multiplier of the PFLS u{a9 b) 
modulo p. If k - a(a, b9 p) , then s(a, 2?, p) = uk + 1 (mod p) . Then 

B(a, 2?, p) = ]i(a5 b, p)/a(as 2?5 p) 

is the exponent of the multiplier s(a5 b, p) modulo p. Let the characteris-
tic polynomial of the PFLS u(as b) be 

x2 - ax - b = 0. (2) 

Let r± = (a + Va^"* 42?)/2 and r2 = (a - Ja1 + 42?)/2 be the roots of this 
polynomial. Then by the Binet equations 

un = (rj - r")/^ - r2). (3) 

Let 

D = a2 + 42? = (r1 - P 2 ) 2 
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be the discriminant of the characteristic polynomial. Throughout this paper 
K will denote the algebraic number field Q(vD). R will denote the integers 
of K. Further, Zp and GF(p2) will denote the Galois fields with p and p2 

elements, respectively. Finally, ordp(d) will denote the exponent of d mod-
ulo p. 

2. PRELIMINARY RESULTS 

The following well-known results will be necessary for our later theo-
rems. 

LEMMA 1: Let p be a prime. In the PFLS w(a, b), suppose that b t 0 (mod p) . 
Then the PFLS u(a9 b) is purely periodic modulo p and if u E 0 (mod p), then 

a(a, b, p)\k. (4) 

If b = 0 and a f 0 (mod p) , t£en the ranfc of apparition of p in u{a, b) is 
undefined and u(a9 b) reduced modulo p is of the form 

(0, 1, a, a2, a3, . . . ) . 

If b = 0 and a = 0 (mod p), then u(a, Z?) reduced modulo p is of the form 

(0, 1, 0, 0, 0, . . . ) -

PROOF: Suppose the pair (n&, Wfc + i) is the first pair of consecutive terms 
to repeat and k ^ 0. Let m = |i(a, 2>, p) . Then wfc + m = ufe and uk + 1 + m =• w ^ + 1 
(mod p). However, by the recursion relation (1), 

buk_x = wfc+1 - auk. 

Since b f 0 (mod p), 

wfe_i E (Wfe+i - auk)lb (mod p). 

Thus, the pair (uk_l9 uk) also repeats, which is a contradiction if & ^ 0. 
Thus, the pair (u0, ux) repeats. Hence, w(a, 2?) is purely periodic modulo p. 
A similar argument shows that if uk = 0 (mod p) , then a(a, 2?, p)|fc. The rest 
of the lemma follows by direct verification. 

LEMMA 2: Let p he an odd prime. In the PFLS u(a9 b), suppose b t 0 (mod p). 
Then 

Up-(D/p) E °  (mod P) » 

p/here (Z?/p) is the Legendre symbol for the quadratic character of D modulo p. 
Further, 

up = {D/p) (mod p). 
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PROOF: See [1, pp. 315-317] or [2, p. 45]. 

COROLLARY: Let V be an odd prime. Consider the PFLS u(a9 b) . Suppose b f 0 
(mod p) . Then if (D/p) = 1, 

a(a, b9 p)|p - 1 

and p - 1 is the maximal value for a(a9 2?, p) . 

]i(a9 &s p) \p - 1 

and p - 1 is the maximal value for \x(a9 b9 p) . 

a(a9 &9 p) |p + 1 

and p + 1 is the maximal value for a(a, b9 p). 

\±(a9 b9 p)\p2 - 1 

and p2 - 1 is the maximal value for \i(a9 b9 p) . 

3, SPECIAL PRIMES HAVING MAXIMAL PERIODS AND RANKS OF APPARITION 

We will now see that given specific PFLSfs u(a9 b) 9 there exists a class 
of primes dependent on the parameters a and b with maximal ranks of appari-
tion and maximal periods. In the case of ranks of apparition, we will also 
obtain the next best result, namely half-maximal ranks of apparition. We now 
present the following results. 

LEMMA 3: Let p be an odd prime. Consider the PFLS u(a9 b). Suppose pjfabD. 

(i) If (-b/p) = 1, then 

u(P-(D/P))/2 E °  ( m o d P>' 

(ii) If (-b/p) = -1, then 

U(P~(D/p))/2 ? °  (m° d P>-

PROOF: See D. H. Lehmer [5] or Robert P. Backstrom [1]. 

THEOREM 1: Let p he an odd prime. Consider the PFLS u(cc9 b). Suppose pjfdbD. 

(i) If r is a prime and p - 2v + 1 is a prime such that 
(-b/p) = (D/p) = 1, then 

a(as b9 p) = 2? = (p - l)/2. 

Further, if (D/p) = 1, 

Jf (D/p) = -1, 

Moreover, if (D/p) = -1, 
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(ii) If s is a prime and p - 2s - 1 is a prime such that 
(-b/p) = {Dip) = -1, then 

a (a, b\ p) = p + 1. 

(iii) If s is a prime and p = 2s - 1 is a prime such that 
(-b/p) = 1 and (D/p) = -1, then 

a(a, 2>, p) = s = (p + l)/2. 

(iv) If r is a prime and p = 2P + 1 is a prime such that 
(-b/p) = -1 and (£>/p) = 1, then 

a(a, &, p) = p - 1. 

PROOF: See Backstrom [1], This proof relies heavily on Lemma 3. 

COROLLARY: Let p be an odd prime. Consider the PFLS u(a9 b) . Suppose pjfabD. 

(i) If v is a prime and p = 2r + 1 is a prime such that 
(-b/p) = (D/p) = 1, 

\i(as b, p) =. p - 1. 

(ii) If s is a prime and p = 2s - 1 is a prime such that 
(D/p) = 1 and -b is a primitive root modulo p, then 

\i(a, b, p) = p2 - 1. 

PROOF: (i) By the corollary to Lemma 2, ji(a» 2?, p) is at most p - 1 and the 
result now follows. 

(ii) By Lemma 25 

uv = (D/p) = -1 (mod p) 
and 

UP~W/P) = up+l E °  ^mod P>-

Now, by the recursion relations 

s(a, £, p) = ua{atbtp)+1 = up + 2 = £>Mp + aup + 1 

= -i + 0 = -b (mod p). 

Further, 

ordp(s(a, 6, p)) = ordp(-b) = p - 1 

by hypothesis. Thus, 
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y(a, b, p) = (a, b, p) • ordp(s(a, b9 p)) 

= (p + l)(p - 1) = p2 - 1. 

Unfortunately, it is not known if there exist an infinite number of pairs 
of primes of the form {r9 2v + 1) or (s, 2s - 1). Two other classic sets of 
primes, the Mersenne primes, Mq = 2q - 1, where q is a prime, and the Fermat 
primes, Fn = 22* + 1, can have maximal periods. We have the following theo-
rems . 

THEOREM 2: Consider the PFLS u(a9 b). Let p = Mq = 2q - I be a Mersenne 
prime. 

(i) If {-b/p) = {Dip) = -1, then 

a (a, fr, p) = p + 1. 

(ii) If {Dip) = -1 and -fc is a primitive root modulo p, then 

y(a, 2?, p) = p2 - 1. 

PROOF: (i) By Lemma 2, up + i = 0 (mod p) . Now by Lemma 1, if uk = 0 (mod p) , 
then a(a, £>, p)|k. Moreover, by Lemma 3, pjfU(P + 1) /2* The only 
divisors of p + 1 are 2n, where 0 < n < q. Thus, 

a(a, &, p) = p + 1, 

since this is the only divisor of p + 1 not dividing (p + l)/2. 

(ii) This follows from the same argument used in the proof of asser-
tion (ii) of the corollary to Theorem 1. 

THEOREM 3: Consider the PFLS u{a9b). Let p = Fn = 22 + 1 be a Fermat prime. 
If {-b/p) = -1 and {Dip) = 1, then 

a(a, b9 p) = ]i{a9 b9 p) = p - 1. 

PROOF: By Lemma 2 and its corollary, a(a, £>, p) |pn - 1. and ]\{a9 b9 p)\p - 1. 
The only divisors of p - 1 are 2k, where 0 < k ^ 2 . But by Lemma 3, we have 
PMP-n/2« Therefore, 

a(a, fc, p) = \±{a9 by p) = p - 1, 

since this is the only divisor of p - 1 not dividing (p - l)/2. 

Unfortunately, again, it is not known if there are an infinite number of 
Mersenne or Fermat primes. 
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4. PRELIMINARY LEMMAS FOR THE GENERAL CASE 

Theorems 1, 2, and 3 and the corollary to Theorem 1 are limited in that, 
for a specific PFLS, we do not know if there are an infinite number of primes 
having the required form to assure that these primes have maximal ranks of 
apparition or periods. What we intend to do is, instead of fixing the PFLS 
u(a9 b) , we will fix the prime and ask if there are PFLSTs for which the rank 
of apparition or period is a maximum. The answer is "yes" for both the cases 
(D/p) = 1 and (D/p) = -1, and there are an infinite number of PFLSfs which 
satisfy this condition. More generally, given an odd prime p, we will vary 
over all PFLSfs and investigate the possible values for the period, rank of 
apparition, exponent of the multiplier, and multiplier modulo p. In the first 
three cases, we shall see that there exist PFLS?s reduced modulo p for which 
the function takes on a maximal value. Clearly, if we let the parameters a 
and b vary over all the integers rather than just the integers between 0 and 
p - 1, we will obtain an infinite number of PFLS*s u(a, b) with this proper-
ty. We will now need the following four lemmas. 

LEMMA 4: Let p be an odd prime. Suppose that pjfbD. Let P be a prime ideal 
in K = Q(JD) dividing p. Consider the PFLS u(a, b) . 

(i) \\(a> b, p) is the least common multiple of the exponents of v1 and 
r2 modulo P. 

(ii) a(a, b, p) is the exponent of r1/r2 modulo P. This is also the 
least positive integer n such that v^ E r2 (mod P) . If (D/p) = -1, 
then a (a, b, p) is also the least positive integer n such that r™ 
is congruent to a rational integer modulo P. 

(iii) If k = a(a, b, p), then 

s(a, b, p) = v\ (mod P). 

PROOF: Let R denote the integers of K. Since b i 0 (mod p), neither r± nor 
r2 = 0 (mod P) . Since R/P is a field of p or p2 elements, r1/r2 (mod P) is 
well-defined. 

(i) Let n = y(a, b9 p). Then 

un E 0 (mod p) E 0 (mod P) 
and 

un+1 E 1 (mod p) E 1 (mod P) 

by definition of \i(a, b, p) . Since D = (r± - r2)2 t 0 (mod p) , 

un = (rj - r2
r)/(r1 - r2) 

is well-defined modulo P. Since 

(rj - r^)/(r1 - r2) = 0 (mod P), r? = rj (mod P). 
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Hence, 

un + 1 = (rj^) - r«(r1))/(r1 - P 2 ) = v\E 1 (mod P). 

Thus, 

p£ E p* E 1 (mod P) . 

Conversely, if 

v\ E p£ E 1 (mod P), 

then it easily follows that uk E 0 (mod p) and w^+i E ^ (mod p) . 
Assertion (i) now follows. 

(ii) Now let n = a(a, £5 p) . Then 

wn = (rj - rn
2)/(r1 - P 2 ) = 0 (mod P). 

This occurs only if r" E p^ (mod P). Dividing through by v\ , we 
obtain 

(Pi/p^" E 1 (mod P), 

and hence a(a, b, p) is the exponent of r1/r2 (mod P) . Further, if 
(P/p)= -1, let c be the automorphism of the Galois field R/P of p2 

elements. Then 

ad^) = pf E P2 (mod P) 
and 

a(rj) = (r{)n = r« (mod P) . 

Thus, if P£ = p* (mod P) , we obtain (p£)p = P* (mod P) . Now, P/P = 
Zptv^], where Zp is the field with p elements. In Zp[VS] 5 the only 
solutions of the equation 

xp - x - 0 

are those in Zp by Fermatfs theorem. Consequently, the rest of as-
sertion (ii) now follows. 

(iii) Let k = a(a, b9 p). Then 

uk+1 = s(a9 b, p) (mod p) E s(a, b9 p) (mod P). 

By the proof of (ii), P£ E p£ (mod P). Thus, 

Wfc + i = (^i+1 ~ ̂ 2 + 1)/(̂ i - *2> E (r*^) - r\{v1))l(v1 - r2) 

E r* E s(a9 b, p) (mod P) . 

The proof is now complete. 
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LEMMA 5: Let p be an odd prime. Let m he a residue modulo p - Then, given a 
fixed integer a, there exists a unique residue b (mod p) such that in the 
PFLS w (a , b) , (P/p) = 0 or 1 and r± E m (mod p) . 

PROOF: We want 

7w E (a + Va2 + 4 i ) / 2 ( m o d p ) . 
Then 

(2m - a ) 2 E a 2 + 42? (mod p) . 

Solving for 2?, we see that b = m2 - am (mod p) suffices. Note that if m E a/2 
(mod p) , then r± = r2 (mod p) and (P/p) = 0. 

LEMMA 6: Let m ^ 0 (mod p) 2>e sozne residue modulo p, where p is azi odd prime. 
Then, given a fixed integer b, where b ? 0 (mod p) , there exists a unique 
residue a (mod p) such t&at in the PFLS u(a, 2?), (#/p) - 0 or 1 and r± = 77? 
(mod p). 

PROOF: By the proof of Lemma 5, if such a residue a exists, 

b E m2 - am (mod p). 

Solv ing for a , we o b t a i n 

a E (??22 - 2?)/7?7 (mod p ) . 

Thus, such a residue a does exist. Note that if m2 E -2? (mod p) , then 

P 2 E -i/tfZ E 77Z E P 1 (mod p) 

and (P/p) = 0 . 

LEMMA 7: Let m and n he a fixed pair of residues modulo p where p is an odd 
prime. Then there exists a unique PFLS u(a9 b) reduced modulo p such that 
(Dip) = 0 or 1 and r± E m, r2 E n (mod p) . 

PROOF.- Suppose that such a PFLS u(a, b) does exist. Then r1 = 77? and r2 E n 
(mod p) . Further, P X + r2 = a. Moreover, i>12,2 = ~^' Thus, 

a E 777 + n, 2? E -77?n (mod p) 

suffice as the parameters of the PFLS u(a, b) . Note that if 777 E n (mod p) , 
then P X E r2 (mod p) and (D/p) = 0 . 

5. THE CASE (D/p) = 1 

We are now ready to present our main results. 
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THEOREM 4: Let p be an odd prime and let d $ I be a divisor of p - 1. Let 
t(d) be the number of ways of expressing d as the least common multiple of 
the exponents of the nonzero residues m and n (mod p ) 9 where m $ n (mod p). 
Then there exist t(d) PFLS!s u(as b), where 0 < a < p - 1 and 1 < b < p - 1, 
reduced modulo p, such that (D/p) = 1 and \l(ct9 b* p) = d. In particular 
there exist t(p - 1) reduced PFLS!s u(a3 b) with a maximal period, of p - 1. 

PROOF; First, by the corollary to Lemma 2, \i(a9 b, p) is at most p - 1. By 
Lemma 4(i), y(a, by p) is the least common multiple of the exponents of r1 
and P 2 modulo p. By Lemma 7, for any pair of residues m and n, where m i n 
(mod p) 5 we can find a PFLS u(a, b) such that z>i = m (mod p) , P 2 = ̂  (mod p) 9 
and (Z?/p) = 1. Since for any positive divisor d of p - 1 there exists a resi-
due m such that ordp(m) = d3 the theorem follows. 

THEOREM 5: Let p be an odd prime and let d $ 1 be any positive divisor of 
p - 1. Then there exist exactly (p - l)/2* cj)(d) PFLSfs u(a5 b) reduced mod-
ulo p such that b ? 0 (mod p) , (D/p) = 1, and a(a3 b, p) = d. In particular 
there exist (p - l)/2 * <|>.(P ~ 1) such PFLS?s with a maximal rank of apparition 
of p - I. ' • 

PROOF: a (a, b9 p) = d if and only if 

ud = (pi " Y&KV-L - r2) ~ 0 (mod p) 

and uw ^ 0 (mod p) for any positive integer n < d. Let P 2 = ̂ 1 9 where £7 ? 1 
(mod p) . Then r£ = 9d^i- Hence, a(a9 2>, p) = d if and only if g belongs to 
the exponent d modulo p. Note that neither r1 nor P 2 = 0 (mod p) 9 since b $ 
0 (mod p) . Now there exist (J)(<i) residues belonging to the exponent d modulo 
p. Since i>1 can be any one of the p- 1 nonzero residues by Lemma 7, we have 
(p - 1) • §(d) ordered pairs of residues, (P19 P 2 ) = (P15 gpx) , such that the 
corresponding PFLS u(as b) has a rank of apparition of p equal to d. 

We are really interested in the unordered pairs of solutions for r± and 
p2s since vx and P2 considered In any order determine the same PFLS. The 
ordered pairs (P1 } P 2 ) and (r2s 3?i) are equal as unordered pairs. Now, if 
r2 E 9ri* then 2»1 = r2/g9 where g f 0 (mod p), since neither r± nor P 2 = 0 
(mod p). But if # belongs to the exponent d9 so does 1/^. Further, P3 ? P 2 

(mod p) 9 since (D/p) ^ 0. Thus, exactly half of the (p - 1) • §(d) ordered 
pairs are equal as unordered pairs. The theorem now follows. 

THEOREM 6: Let p be an odd prime. If d\p - 1 and d £ p - 1, then there ex-
ists a PFLS u(a, b) reduced modulo p such that b $ 0 (mod p), (D/p) = 1, and 
3(a, Z?, p) = cL Further, if s ^ 0 (mod p) is a fixed integer, then there 
exists a PFLS M(a, 2?) reduced modulo p such that s(as b* p) = s (mod p) . 

PROOF; By Lemma 7, simply pick residues P 1 and P 2 modulo p such that 

ordp(p1) = p - 1 and p2 E gr1 (mod p ) s 
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where ordp(g) = (p - l)/d and g $ 1 (mod p) . Hence, for the corresponding 
PFLS u(a, b), 

y(a, i, p) = [ordp(p1), ordp(p2)] = p — 1 

by Lemma 4(1), where [m, n] is the least common multiple of m and n. By the 
proof of Theorem 5, 

a(a9 2?, p) = (p - 1)AL 
Then 

3(a, J, p) = y(a, Z>, p)/a(a, 2?, p) = <f. 

Now suppose that s is a fixed integer and the exponent of s modulo p is d. 
Then, by elementary number theory, there is a primitive root r1 of p such that 
p(p- = Q (mocj p) # By t^e above proof, we can find an integer r2 such that 
r± and r2 are the characteristic roots of the PFLS u(a9 b) with 

y(a, b9 p) = p - 1 and a(a, 2>, p) = (p - l)/d = &. 
Then 

s(a> b9 p) = rk E s (mod p) 

and we are done. 

6. THE CASE (£>/p) = -1 

Theorems 7, 8, and 9 below will deal with those PFLS's u(a, b) for which 
(D/p) = -1. 

THEOREM 7: Let p be an odd prime. Suppose that d\p2 - 1 hut d\p - 1. Then 
there exist exactly (l/2)(f)(<if) PFLS's u(a9 b) reduced modulo p such that 

(D/p) = -1 and \i(a9 b9 p) = d. 

In particular^ there exist exactly (l/2)(j)(p2 - 1) reduced PFLS*s u(cc9 b) with 
a maximal period of p - 1. 

PROOF: Look at GF(p2), the finite field of p2 elements. Since the nonzero 
elements form a cyclic multiplicative group, there exist exactly <j>(d) elements 
in this field belonging to the exponent d. Let r1 be one of these elements. 
Let Zp represent the field of p elements. Now, r1 e GF(p2) but r1 i Zp by 
Fermat's Little Theorem, since the exponent of vx does not divide p - 1. So 
2p[Px] = GF(p2). Thus, r1 satisifes an irreducible polynomial of degree 2 
over Zp: 

x2• - ax - b = 0, (5) 

where 0 < a < p - 1 and 1 < b ^ p - 1. The other root of this polynomial is 
oir-t) = v\ = r2. Then 

2»! = (a + Va"2"^ 420/2 and r2 = (a - Va2 + 4Z>)/2 
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can be considered elements of Z=§(\/a2 + 4i). Let P denote a prime ideal of 
K dividing p. By assumption, both r1 and r2 belong to the exponent^ in the 
field R/P of p elements, since P X does and r2 is automorphic torl t Hence, 
by Lemma 4(i), y (a , b9 p) = d. Finally, it is clear that there exist exactly 
(l/2)$(d) such PFLS?s reduced modulo p9 since each PFLS u(a9 b) is determined 
by 21! and r2 • 

THEOREM 8: Let p be an odd prime. Suppose d\p + 1 and d j> 1. Then, there 
exist PFLS's reduced modulo p9 such that (D/p) = -1 and a (a, 2?, p) = a7. Jn 
particular, there exist PFLSfs w(a, 2?) p̂ ith a maximal rank of apparition of 
p of p + 1 . 

PROOF: First, find an element r± of GF(p2) such that r-^ belongs to the ex-
ponent (p - l)d. Then 2»x is not a (p - l)st root of unity and, hence, r± is 
not a member of the prime field Zp. Thus, GF(p2) = Zpfp-jJ. As in the proof 
of Theorem 7, we can consider i^ an element of K. Let P be a prime ideal in 
£ dividing p. Then 

p^"1^ = 1 (mod P) 

and pf is a (p - l)st root of unity in R/P. Hence, 

r^ E z (mod P) , 

where z is a rational integer and z t 0 (mod p) , since these are the only 
residue classes (mod P) that are (p - l)st roots of unity. 

Now, suppose that 2»" = £' (mod p) , where 0 < n < d and s f is a rational 
integer. Then 

rl{p-1] E 1 (mod P) 

and n(p - 1) < (p - l)<f. But this is a contradiction. Thus, d is the least 
positive integer such that rf = z (mod P), where 3 is a rational integer. 
Hence, by Lemma 4(ii), a(a, £>, p) = <2. 

THEOREM 9: Let p be an odd prime; also let d\p - 1. If p is not a Mersenne 
prime, then there exists a PFLS u(a9 b) reduced modulo p such that {Pip) = -1 
and $(a9 b9 p) = d. If p is a Mersenne prime then there exists at least one 
PFLS u(a9 b) reduced modulo p such that (D/p) = -1 and 3(a, &, p) = d if and 
only if d is even. In any case* there exists a PFLS u(a, b) with a maximal 
exponent of the multiplier modulo p of p - 1. Further, if d\p - 1 and there 
exists a PFLS u(a9 b) such that $(<z9 b9 p) - d and s is any integer whose ex-
ponent modulo p is d9 then there exists a PFLS u(a9 b) such that s(a9 b9 p) = 
s (mod p). 

PROOF: Suppose that the period modulo p of a PFLS u(a9 b) is k9 where 

kjfp - 1, k\p2 - 1, and (D/p) = -1. 
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By the proof of Theorem 8S both r1 and r2 belong to the exponent k modulo P. 
It is clear that we can express k uniquely as the product of 777 and n, where 
m and n are positive integers, 77z|p-l, n|p + l, n > 1, and (mn9 p - 1) =777. 
We shall show that n = a (a, b* p) and 777 = $(a$ b* p). 

By Lemma 4(ii), a(a, b3 p) Is the least positive integer o such that v\ 
Is congruent to a rational Integer modulo P. Now, n is such an integer, be-
cause r'1 is an 777th root of 1 in R/P and7??|p - 1. I claim, that no smaller 
positive integer j suffices. If this were true., then 

3(a, b3 p) = y(a, b9 p)/a(a9 b9 p) = mn/j 

and TTM/J must d i v i d e p - 1. C l e a r l y , 

?7?n/j 1777ft 

also. But, since j <C n, rnn/j > 77?. However, 777 is the largest integer divid-
ing both ?77 and p - 1, so we have a contradiction. Thus, a(as b9 p) = ft and 
3 (a, 2?s p) = y(a, b9 p)/a(a, &, p) =77?, 

Now suppose that p is not a Mersenne prime. Clearly, (p - 1, 'p + 1) = 2. 
Since p is not a Mersenne prime, p + 1 has a prime factor h > 2 such that 
(ft, p - 1) = 1. Let r1 be any integer in R whose exponent (mod P) is dh„ By 
the proof of Theorem 7, we can find a PFLS «(a, b) such that (Pip) = -I, the 
characteristic roots P X and P2 have exponent d/z (mod P) , and y(a, £>, p) = dft8 
It is apparent that (dh9 p - 1) = d* By our above arguments in this proof, 
3(a5 bs p) = <2. Furthermore, among the fy(dh) , such possibilities for 2Q1, pj 
must be one of the (j)(ci) residues (mod P) whose expopent is d. Since (ds ft) -
1, §(dh) = (f)(d)(f)(/2) . Thus, it follows that for any fixed integer s with ex-
ponent d (mod p) , there exist (j)(̂ ) residues r± (mod P) such that r\ = s (mod 
P) . Then r± and 0"(r1) = r2 are the characteristic roots of a unique PFLS 
u(a9 b) modulo p3 where o is the Frobenius automorphism of R/P. By Lemma 4-
(iii), 

T\ ~ s(a9 b9 p) = s (mod p). 

Now assume that p Is a Mersenne prime. Then p + 1 is a power of 2 and 
21p — I but k\p - 1 , If d is an even number, then by Theorem 7 we can find a 
PFLS u(a9 2?) such that (Dip) = -1 and y(a, 2?§ p) = 2d. It is easily seen that 
(2<f, p - 1) = d. By our above arguments, $(a9 b9 p) = d. Further, by using 
our arguments above, if s is a residue (mod p) whose, exponent is d9 then there 
exists a PFLS u(a9 b) such that s(a9 b, p) E s (mod p). If d is an odd num-
ber, it is impossible to find positive integers h and k such that dh = k9 
d\p - 1, h\p + 1, ft > 1, and (dft, p - 1) = J. This is so because ft must be a 
power of 2 greater than 1 and thus (dh9 p - 1) = 2d9 not d. The theorem now 
follows. 

7. THE CASE (Dip) = Q 

Theorem 10 will explore the case in which (D/p) =•0. But first, we will 
need Lemma 8, which discusses the possibilities for ]i(a9 b9 p) , ot(a, 2?, p) , 
3(a, bs p) , and s(a, 2?, p) for such PFLS?s u(a, /3) . 
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LEMMA 8: In the PFLS u(a9 b)» suppose p\ab 9 but p\D. Let af = a/2. Then 

a(a, b9 p) = p, 

\i(a9 b9 p) = p • ordp(a')5 

s(a9 b9 p) E a' (mod p) , 
and 

g(a, &, p) = ordp(a'). 

PROOF: The fact that a(a, b9 p) = p follows from Lemma 2. The rest of the 
theorem follows from definition of the terms and the fact that 

s(a9 b, p) = v\ = (a/2)p E (a/2) (mod p) 

THEOREM 10: Let p he an odd prime. 

(i) There exist exactly p - 1 PFLS's w(a, £>) reduced modulo p such 
that (£/p) = 0, Z? ̂  0 (mod p) , and a (a, £>, p) = p. 

(ii) Jf d\p - 1, then there exist exactly $(d) PFLS's u(a, £>) reduced 
modulo p such that 3(a, &, p) = d* and y(a, Z?, p) = dp. If s is 
any integer such that the exponent of s (mod p) is d9 then there 
exists exactly one of these $(d) PFLS's u(a9 b) reduced modulo 
p such that s(a9 b, p) = s (mod p). 

PROOF: (i) a(a, b9 p) = p if and only if a2 + kb E 0 (mod p) . Given a non-
zero residue a, there is a unique nonzero residue b such that 
a2 + 4& E 0 (mod p) . Assertion (i) now easily follows from Lem-
ma 8 and Lemma 7. 

(ii) By Lemma 8, s(a, b9 p) = a/2 (mod p ) . The result now easily 
follows from Lemma 7. 

8. THE CASE FOR WHICH b IS A FIXED INTEGER 

By Lemma 3, one might suspect that the parameter b might play a large 
part in determining the divisibility properties of the PFLS u(a9 b). The 
following two well-known identities add further credence to this suspicion, 
since they depend only on the parameter b. 

,.!«„ + ! = i-b)n-\ 
bumUn-l + unum+l-

(6) 

(7) 

Both (6) and (7) can be proved from the Binet formulas or by induction. So, 
given a fixed value of b9 we should be able to develop some conclusions con-
cerning the possible periods and ranks of apparition of PFLS's u(a9 b) with 
respect to a given odd prime p. In particular, we have the following three 
theorems. 
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THEOREM 11: Suppose that p is an odd prime and b is any integer such that 
b ? 0 (mod p) . If \x(a, b9 p) = d, then ordp(-b)\d for any PFLS u(a, b) such 
that (D/p) •- 1. Let d ^ 1 be any integer such that d\p - 1 and ordp(-b) \d. 
Further, suppose that it is not the case that both b = 1 (mod p) and d = 4 or 
both b = -1 (mod p) and d = 2. Then there exists at least one PFLS u(a9 b) 
reduced modulo p such that p(a, b9 p) = d and (D/p) = 1 . If b = 1 (mod p) 
and <i = 4 or b E -1 . (mod p) and d = 2, then no such PFLS u(a, 2?) exists. In 
particular, if ordp(-b) = p - 1, then there exists at least one PFLS u(a9 b) 
with a maximal period modulo p. 

PROOF: Firstly, we shall show that if u(a9 b) is a PFLS such that (D/p) = 1 
and ]i(a9 b9 p) = d9 then ordp(-Z?) |<i. Note that -b - 2i

1z)
2
 a n d d = [ordp(p1), 

ordp(p2)] by Lemma 4(i). Thus, it follows that 

(-b)d = v{v{ = 1 • 1 E 1 (mod p). 

Thus, ordp(-Z?)|d. Next, note that if (D/p) - 1, then r1 t r2 (m°d p) . Since 
r2

 = -b/rl9 T-L E 2»'2 (mod p) if and only if v\ = -Z? (mod p) . 

If £? ̂  2, 3, 4, or 6, then §(d) ^ 4. Consequently, we can then choose a 
residue r1 modulo p such that ordp(r1) = d and r\ t -b (mod p), since there 
are $(d) residues n (mod p) such that ordp(n) = d and at most two residues m 
(mod p) such that m1 E -b (mod p). Then 

pf = (-b/r1)d E 1 (mod p), 

since ordp(-2?)|d. Hence, ordp(p2) | ordp(p1) and 

[ordp(p1), ordp(p2)] = d. 

By Lemma 4(i), \x(a9 b9 p) = d for the PFLS u(a9 b) corresponding to r± and T2 
(mod p) . By Lemma 6, we can find a PFLS w(a, 2?) such that its characteristic 
root Px indeed satisfies the conditions that ordp(r1) = d and v\ 1 -b (mod 
p) . 

Now suppose that <i = 2, 3, 4, or 6 and we can choose a residue P X (mod p) 
such that ordP(p1) = d and z»f ̂  -b (mod p) . Then, by our previous argument, 
u(a, &, p) = <i. 

If <f = 2- and v\ E -Z? (mod p) for all choices of P X such that ord^r^ = 2, 
then -b E 1 (mod p). However, this case is excluded by hypothesis. 

If d = 3 and v\ E -2? (mod p) for all choices of r1 such that ordp(px) = 3, 
then ordp(-Z?) = 3. Now, choose r1 E 1 (mod p) . Then 

r2 E -b/r E -& (mod p) . 

By Lemma 4(i), \i(a, b9 p) = 3. 

If d - 4 and rf E -Z> (mod p) for all choices of r1 such that ordp(P1) = 4, 
then -Z? E -1 (mod p) . But this case is excluded by hypothesis. 
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If d = 6 and r1 E -b (mod p) for all choices of P X such that ordpCi^) = 6, 
then ordp(-2?) = 3. In this case, choose r± E -1 (mod p) . Then r2 E -S/-1 E 
2? (mod p) . Clearly then, ordp(2?) = 6 . By Lemma 4(i), ]i(a9 2>, p) = 6. 

Now suppose that 2? E 1 (mod p) and d = 4. Then {wn} modulo p is of the 
form 

uQ E 0, u1 E 1, u2 E a, w E a2 + 1, 

u^ E a3 + la E 0, u5 E a2 + 1, ... . 

Since a2 + 1 E 1 (mod p), then a E 0 (mod p). But then, u(a, b9 p) = 2 and 
not 4. Thus, y(a, 1, p) can never be 4. 

If b E -1 (mod p) and d = 2, then {un} modulo p is of the form 

UQ E 0, U1 E 1, u2 E 0, U3 E -z^ E l , ... . 

But it is clearly impossible for u3 to be both congruent to -1 and 1 if p is 
an odd prime. Thus, u(a, -1, p) never equals 2. 

THEOREM 12: Let p be an odd prime, and let b be any integer such that b f 0 
(mod p). 

(i) If (~b/p) = 1, then there exists a PFLS u(a, b) reduced modulo p 
such that (Pip) = 1 and a (a, 2?, p) = d if and only if d\(p - I)/2> 
where d ^ 1. 

(ii) Jf7 (-b/p) = -1, then there exists a PFLS w(a, 2?) reduced modulo 
p such that (D/p) = 1 and a (a, 2?, p) = d if and only if d\p - 1 
and ^(p - l)/2. 

PROOF: (i) Firstly, a (a, 2?, p) can never equal 1, since ux = 1. Now, sup-
pose that we have found a PFLS u(a, b) such that a(a, 2?, p) = d9 
where d ^ 1 is a positive integer dividing p - 1 and (-b/p) ~ 1. 
Then 

r2 = -blv^ E ̂ p1 (mod p) 

for some nonzero residue £7 ? 1 (mod p). This leads to the con-
gruence 

v\ E -big (mod p). (8) 

If a(a, 2?, p) = <f, then by Lemma 4(ii), d is the least positive 
integer such that rf E i»| (mod p) . Consequently, ordp(gO = d. 
Since (-blp) = 1, congruence (8) is solvable if and only if 
(glp) = 1. But since ordp(gO = d, (glp) = 1 if and only if 

d\(p - l)/2. 

By Lemma 6, we can now choose v1 such that 
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r i = ~b/9 (mod P)» 

where ordp(g) = d. Assertion (i) now follows. 

(ii) This proof is similar to the proof of (i). 

Before presenting Theorem 13, we will need Lemma 9, which is due to Wyler 
[8]. 

LEMMA 9 (Wyler): Consider the PFLS u(a9 b). Suppose b f 0 (mod p) , and let 
h = ordp(-b). Suppose h - 2°hT, where hf is an odd integer. Let 

k = a(a9 b, p) = 23kr, 

where kr is an odd integer. Let H be the least common multiple of h and k. 

(i) \x(a9 b, p) = H or 2H; g(a, b9 p) = Elk or 2E/k. 

(ii) If o 4- j, then y(as b 9 p) = 2#. 
Jf" <? = j > 0, then ii(a, 2?, p) = #. 

THEOREM 13: Let p he an odd prime of the form 2mq+ 1, where q is an odd in-
teger. Let b he a fixed integer such that b i 0 (mod p). Let h = ordp(-b) -
2°ht

9 where h* is an odd integer. 

(i) Jf a is an integer, then 3(a, £>, p)\2h for the PFLS w(a, b) . 

(ii) Jf (-b/p) = -1, then there exists a PFLS u(a, '2?) reduced modulo 
p such that (Z?/p) = 1 and 3 (a, 2?, p) - d if and only if d\hf. 

(iii) jf (-b/p) = 1, hr ± q9 and either c=0oro<m-l9 then there 
exists a PFLS u(a,' 2?) reduced modulo p such that (£>/p) = 1 and 
B(a9 b9 p) = c? if and only if d\ 2h. 

(iv) Jf (-b/p) = 1, 772 ^ 2, c =777 - 1, and 7z' ̂  g, then there exists 
a PFLS u(a9 b) reduced modulo p such that (B/p) - 1 and 3(a, 2?, 
p) = d if and only if d\ 2h and d t 2 (mod 4) . 

(v) Jf (-b/p) = 1* 777 = 1, and h = q9 then there exists a PFLS u(a9 b) 
reduced modulo p such that (B/p) = 1 and 3(d9 b9 p) = d if and 
only if d\2h and h\d. 

(vi) Jf (-b/p) = 1, 777' > 2, and h = q9 then there exists a PFLS u(a, 2?) 
reduced modulo p such that (Dip) = 1 and 3 (a, 2?, p) = d if and 
only if d\2h and d 4 h. 

(vii) Jf (-b/p) = ls 7?? = 2, and h = 2q9 then there exists a PFLS u(a9 b) 
reduced modulo p such that (D/p) - 1 and 3(a, b» p) = <f if and 
only if d\2h9 d ? 2 (mod 4), and fejtf. 
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) If (-b/p) = 1, 777>3, l<<?</77-l, and hf => q9 then there ex-
ists a PFLS u(a, b) reduced modulo p such that (D/p) = 1 and 
$(a, &9 p) = d if and only if d\lh and d 4- 2h. 

) If (-b/p) = 1, m ̂  39 c = 7?? - 1, and hf ~ q9 then there exists 
a PFLS u(a9 2?) reduced modulo p such that (D/p) = 1 and 3(a9 £>5 
p) = d if and only if d\lhy d i 2 (mod 4) 9 and d ̂  2?z. 

) If there exists a PFLS u(a9 b) such that 3 (a, b, p) = J and s 
is an integer such that ordp(s) = d9 then there exists a PFLS 
u(as b) such that s(as b9 p) = s (mod p) . 

) Let k = a(a5 b9 p) . By the definition of s(a9 fc, p) and (6)5 

s 2 * u L i = wLi - ° E uLi - \uk+2E (^>" ( m o d p>-

Thus, 

s2h = (_6)kfc E ((.fc)h)fc = 1 = 1 (mod p) 

and ordp(s), which is equal to B(a5 bs p) , divides 2/2. 

) Note that (-b/p) = -1 implies that c = m. Since (-b/p) = -1, it 
follows from Theorem 12(ii) that for any PFLS u(a, &) such that 
(D/p) = 1, a(a9 £>, p)f(p - l)/2, but a(a, &, p) |p - 1, Thus, 

2w|a(a, b9 p). 

By Theorem 11, h= 2ahf\\i(a, b, p) . Since a(a, fc, p) |y(a, 2?, p) , 
y(a, b9 p)\p - 1, and 3(as &, p) = y(a9 b9 p)/a(a9 2>, p) 9 it 
follows that $(as b5 p) is an odd Integer, By part (i), 

3(a, bs p)\2h. 
Thus, 

3(a9 Z), p)|/zf, 

Now suppose that d\hT. We wish to cho6se a residue P 1 such that 

p2 = (~b)dJtl (mod p). (9) 

One solution for P X Is (-Z?)̂ "4"1} / 2, since d 4- 1 is even. By Lem-
ma 6 9 we can find a PFLS w(a, b) whose characteristic root vx 
satisfies congruence (9). Now, 

p2 = -b/r1 = (-&)(1-d)/2 (mod p). 

Since (J + l)/2and (1 - d)/2 are relatively prime to each other 
and to hf, 

[ o r d p ( p 1 ) , o r d p ( p 2 ) ] = ovdp(-b) = 2°h'„ 

Thus, by Lemma 4 ( i ) 9 \i(a9 b, p) = 2°hf. By Lemma 4 ( i i ) , 
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a(a9 b9 p) - ordpCr./r,) = ordp( (-b){d+1) /2 / (-b)a'd)/2) 

= ordp((-b)d) • 2°h'/d. 

Thus 

3(a, by p) = y(a, &, p)/a(a, 2>, p) = d. 

(iii) It follows from part (i) that if $(a, 2?, p) = J, then d\2h. If 
d| 2/z and d is odd, then by the same argument as in the proof of 
part (ii), one can find a PFLS u(a9 b) such that (Pip) = 1, 

y(a, by p) = ordp(-2?)9 a(a, i, p) = o?dp(-b)/d, 
and 

3(a, 2>, p) = -d. 

Now suppose that c = 0, d\lh9 and d E 2 (mod 4). By what was 
stated above in this proof, we can find a PFLS w(a, 2?) such that 
{Dip) - 1, 

y(a» 2?, p) = 7z, a(a5 2?, p) = h/(kd)9 
and 

3(a, fe, p) = d/2, 

since d/2 is odd. Note that 

y(a, 2?, p) , a (a, b9 p), and 3 (a, fc, p) 

are all odd. Since ]i(a9 b9 p) is odd, ordp(s(a, b9 p)) is odd, 
and no power of s(a9 b9 p) is congruent to -1 modulo p. Let 
k = a(a, 2?, p) and s = s(a, 2>s p) (mod p). Note that w^+1 = s 
(mod p) and ugk+1 = s^ (mod p) , where ^ is a positive integer. 
One can easily verify that for the PFLS u(a9 b), 

un(-a9 b) = (-l)n"1un(a5 2?). 

It is clear that a(a, b9 p)=a(-a, £>., p) . Let kf = a (-a, 2?, p) 
= /c and s' = s(-a9 b, p) . Then y(-a, 2>, p) = gkr for some posi-
tive integer g and 

E (-1)0*8* E 1 (mod p). 

Since s* ̂  -1 (mod p) and ordp(s) = d/29 it follows that 

g - ordp(s') = <f 

and that 3(-a, £>, p) = d. 
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Now suppose that c > 0, 4|d, and d\Zh. Choose a residue n such 
that n2 = -b (mod p) . This is possible because m > c and ?zf|<7 
imply that 

(-20(p-1)/2 E (-&)2""l?= 1 (modp). 

By Lemma 6, we can find a PFLS u(a, b) whose characteristic root 
P X satisfies 

v\ = nd+2 (mod p). 

One solution for Y-± is n(c?/2)+1, since d is even. Then 

r2 E -blrx = „2-«d/2)+1) = „i-«/2) ( m o d p ). 

Since 1 + (d/2) = -(l - (d/2)) + 2, the greatest common divisor 
of 1 + (d/2) and 1 - (d/2) must divide 2. Since d/2 is even, it 
follows that 1+ (d/2) and 1- (d/2) are both odd, and thus rela-
tively prime. Furthermore, 1+ (d/2) and 1- (d/2) are both rela-
tively prime to ordp(n), which is equal to 2h. Thus, 

)i(a, b, p) = [ordp(p1), ordp(2>2)] = ordp(n) = Zh. 

Further, 

a(a, b, p) = ordp(p1/p2) = ordp(n1+(d/2)/n1'(d/2) ) 

= ordp(n^) = 2h/d. 

Thus, 

$(a, £>, p) = ]i(a, 2?, p)/a(a, 2?, p) = d. 

Finally, suppose that a > 0, d|2fo, and d = 2 (mod 4). Choose a 
residue / such that fh = -2? (mod p) . This is possible, since 
c < m - 1 and fo?|<7 imply that 

(_h)(P-D/k = (-^)2m"2^ = 1 (mod p). 

Note that ordp(/)|4/z. By Lemma 6, we can find a PFLS w(a, &) 
whose characteristic root r± satisfies 

v\ = /d+lf (mod p). 

One solution for rx is f(d/2)+2
y since d is even. Then 

rx = -fc/̂  E f^d/2) + 2) E /2-<<*/2> ( m o d p ) -

Since 2 + (d/2) = -(2 - (d/2)) + 4, the greatest common divisor 
of 2 + (d/2) and 2 - (d/2) must divide 4. Since d = 2 (mod 4), 
d/2 is odd. Consequently, 2 - (d/2) and 2 + (d/2) are both odd 
and therefore both are relatively prime to 4/z, since d\ 2h9 Thus, 
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\i(a9 b9 p) = [orclpC^), ordp(p2)] = ordp(f) . 

Further5 

a(a, b, p) = ordp(ri/r2) - ordp(f2+w/2) /fW» ) 

= ordp(fd) = k • ordp(/)/d. 

Hence, 

3(a, b9 p) = y(a, 2?, p)/a(a, 2?, p) = ̂ . 

(iv) Suppose that there exists a PFLS w(a, 2?) such that (D/p) - 1 and 
3(a, 2?, p) = <f, where d\2h and <i = 2 (mod 4). Further, suppose 
2/72~1||a(a, £, p), where 2fc||n means that 2k\n but 2k+1\n. Then, 
by Lemma 9, y(a, b9 p) = #, where 

H = [ordp(-2?), a(a, i, p)]. 
Thus, 

2IB"1|y(a, 2?, p) and 2°||3(a, b9 p) , 

which is a contradiction. Now suppose that 2e||a(a, b9 p) where 
e < m - 2. Then by Lemma 9, y(a, 2?, p) = 25" and 4l 3 (a, 2?, p) , 
which again is a contradiction* Now suppose that 2m||a(a, b9 p) . 
Then by Lemma 9, y(a, 2?, p) = 2H and 2w+1||y(a, 2?, p) . This con-
tradicts the fact that (D/p) = 1, which implies |i(a, b, p)|p™ 1. 
Therefore, 3(a, 2?, p) ^ 2 (mod 4) for any PFLS u(a9 b) such that 
(D/p) = 1. The rest of this proof is similar to the proofs of 
parts (ii) and (iii), 

(v) Suppose that there exists a PFLS u(a9 b) such that (D/p) = 1 and 
3(a, b9 p) = q or 3(a, b, p) = 2q. If /|a(a, 2?, p) , where /|q 
and / > 1, then by Lemma 9, y(a, b9 p) = H or 2#, and ^// is the 
largest odd divisor of $(a, b9 p). This contradicts the fact 
that q\$(a9 b9 p). Further, a (a, b, p) 4- 1. Thus, a (a, 2?, p) 
= 2. In this case, y (a, b9p) = 2# by Lemma 9, and 4 |y (a, 2?, p) . 
However, this contradicts the fact that (Z)/p) = l, which implies 
\x(a9 b9 p)\p - 1. Thus, q\$(a9 b9 p). The rest of the proof 
is similar to the proofs of parts (ii) and (iii)«, 

(vi) We shall exhibit a PFLS u(a9 b) such that (D/p) = 1 and &(a, b, 
p) = 2q. By Theorem 12(i), we can find a PFLS u(a9 b) such that 
(D/p) = 1 and a(a9 b9 p) = 2, since m > 2 and thus 2| (p - l)/2. 
By Lemma 9, y(a5 2?, p) = 2H = kq9 which divides p - 1. Hence, 
3(a9 b9 p) = 2q. The rest of the proof is similar to proofs of 
parts (ii), (iii), and (iv). 

(vii) We shall exhibit a PFLS u(a9 b) such that (D/p) = 1 and &(a, b, 
p) = q. By Theorem 12(i), we can find a PFLS u(a9 b) such that 
(D/p ) = 1 and a (a, b9 p) = 2. By Lemma 9, y(a, 2?, p) = H = 2^ 
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g(a, b9 p) = q. The rest of the proof is similar to proofs of 
parts (ii)-(v). 

(viii) We shall exhibit a PFLS u(a9 b) such that (D/p) = 1 and &(a9 b9 
p) = 2eq, where 0 < e < e. If 1 < e < e9 then by Theorem 12(i) 
we can find a PFLS u(a9 b) such that (D/p) = 1 and a(a, b, p) = 
2°-e+1, since 2°-e+1\(p - l)/2. By Lemma 9, y(a, b, p) = 2i7 = 
2c + 1q and B(a, 2>, p) = 2eq. If e = 1, then by Theorem 12(i) we 
can find a PFLS u(a9 b) such that (D/p) = 1 and a(a9 b9 p) = 
2 C + 1 , since 2c + 1 | ( p- l)/2. By Lemma 9, u(a, b9 p) = 2H = 2c + 2<7 
and y(a, &5 p) |p - 1, which is consistent with (D/p) = 1. It 
follows that $(a9 b9 p) = 2q. If e = 0, then by Theorem 12(i) 
we can find a PFLS u(a9 b) such that (D/p) - 1 and a(a, b9 p) -
2°. By Lemma 9, y(a9 b9 p) = H = 2Gq and g(a, Z?s p) = q. The 
rest of the proof is similar to proofs of parts (ii), (iii)9 and 
(v). 

(ix) This proof is similar to proofs of parts (ii)-(v) and (viii). 

(x) This proof is similar to that of Theorem 6. 

9. THE CASE FOR WHICH a IS A FIXED INTEGER 

I am unable to obtain such definitive results given the parameter a as 
were obtained given the parameter b. The reason is that P12,

2
 = ~^» while 

ri + rz = a' a n d it is frequently easier to obtain multiplicative results in 
number theory than additive results. We now present two theorems, Theorems 
14 and 15. Theorem 14 is completes while Theorem 15 is not as comprehensive 
as the corresponding result in the preceding section. 

THEOREM 14: Let p be an odd prime and let a be any fixed integer. If a = 0 
(mod p), then for any integer b such that b t 0 (mod p), a(a, b9 p) - 2. If 
a i 0 (mod p), d\p - 1, and d\29 then there exists a PFLS u(a9 b) such that 
(Dip) = 1 and a(a, b9 p) = d. 

PROOF: If a E 0 (mod p) and b t 0 (mod p) , it is obvious that a(a9 b9 p) = 2. 
Suppose that a t 0 (mod p) , d\p - l9 and <^2. Let s be an integer such that 
ordp(s)=<i. We wish to find residues r1 and r2 that satisfy the simultaneous 
congruences 

ri + rz ~ a (m° d p) 
(10) 

r1/r1 ~ s (mod p) 

which lead to the simultaneous congruences 

r 1 -\- r2 = a (mod p) 
(11) 

ri " r2s = ^ (mod p). 
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By Cramer's rule, if a ? 0 (mod p) , then (11) is solvable if and only if 

-rxr2s - rir
2 ^ °  (mod P) * 

Now, ~r1r2s - r±r2 = 0 (mod p) if and only if s = -1 (mod p) , which implies 
that d = 2. However, this case is ruled out by hypothesis. Thus, (10) is 
solvable. Now, by Lemma 7, we can find a PFLS u(a9 b) such that r1 + r2 = a 
(mod p) and r1/r2 = s (mod p). Then 

a(a, 2?, p) = ordp(r1/p2) = ordp(s) = d 

and we are done. 

THEOREM 15: Let p be an odd prime and a be any integer. Look at the collec-
tion 

a - 1, a - 2, a - 3, ..., a - (p - 1). 

Then there exists a PFLS w(a, b) such that b f 0 (mod p) , (Z)/p) = 1, and 
|i(a, 2?, p) =77?, where m is any of the numbers 

[ordp(a - 2^), ordp(i^)], 1 < r̂  < p - 1, 2^ 2 a/2 (mod p) . 

Jn particular, if p > 3, then, given any integer a, there exist at least 
(c()(p- l))/2 PFLS?s u(a, 2?) reduced modulo p such that b $ 0 (mod p) , (£>/p) = 
1, and u(a, b) has a maximal period modulo p of p - 1. 

PROOF: This follows from the fact that r^_ -\- r2 = a and from Lemmas 4(i) and 
7« Note that by hypothesis.,, r1 % r2 (mod p) , which is satisfied if and only 
if r1 ? a/2 (mod p ) . The last assertion follows from the fact that there are 
(J)(p - 1) residues modulo p belonging to the exponent p - 1. Excluding the 
residue a/2 modulo p leaves at least (J>(p - 1) - 1 residues remaining with a 
maximal exponent of p- 1. Since p > 3, <j)(p - 1) - 1 is a positive odd inte-
ger. Since a PFLS u(a9 b) might have both its characteristic roots vx and r2 
with exponents of p - 1, these residues correspond to at least 

(<|>(p ~ 1) " 2)/2 + 1 

distinct PFLS's u(a, b) modulo p. The result now follows. 

The reason I was not able to obtain a more definitive result for Theorem 
15 was that for a PFLS u(as b) , ]i(a, b, p) is determined by 

[ordp(i,i),» ordp(p2)]3 where P X + r2 = a. 

However, I was not able to find any clear relationship between the exponents 
of r1 and a - r± modulo p, which limited the scope of the theorem. 
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