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1. INTRODUCTION 

The Fibonacci numbers are defined by setting 

a± = a2 = 1 and an + 1 = an + an_1 for n > 2, 

A related family of sequences are the £-bonacci numbers (where O 2 is 
an integer), These are defined by setting 

ax = 1, an = 2n~2 for 2 < n < t 
and 

an + i = an + -° + an-t+i f o r n> t. 

Thus, for t = 2 we obtain the Fibonacci numbers again, and for t = 3 we 
obtain the so-called Tribonacci numbers. 

The Fibonacci numbers have many interesting properties. The property 
of interest to us here is that this sequence satisfies the equation 

Aan = an_1 (n > 2), 

where A denotes the forward difference operator. The Tribonacci numbers 
satisfy 

A3an = 2an_2 (n > 3). 

We call a sequence (an) that satisfies an equation of the form 

hkan = rnan_T in > r), (1) 

a self-generating sequence with parameters (k9m9 r). We abbreviate this 
to SGS(k9m, r) . [We will work under the convenient assumption that k9 m9 
and r are integers and that k ^ 1. Similarly, our sequences (an) will be 
integral.] 

Thus, the Fibonacci numbers are an SGS(1, 1, 1) and the Tribonacci 
numbers form an SGS(3, 2, 2). This immediately suggests the question of 
whether, for any t > 4, the t-bonacci numbers form a self-generating se-
quence. The main result of this paper is as follows. 
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Theorem 1 

The Fibonacci sequence is an SGS(1, 1, 1); the Tribonacci sequence is 
an SGS(3,2, 2). For t ̂  4, no t-bonacci sequence is self-generating. 

2. PROOF OF THEOREM 1 

Let 

n = l 

denote the generating function (G.F.) of the sequence (an) and let kJF(x) 
denote the G.F. of the sequence of jth forward differences (AJan). 

Lemma 1 

For j > 1, we have 

AjF(x) = \[(l - x)jF(x) - xp^^x)], (2) 

where p._1(^) denotes a polynomial of degree at most j - 1. 

Lemma 1 can be proved by induction on j. We leave the details as an 
exercise. 

Now let (an) be an SGS(k9m,r). In order to satisfy (1), we have to 
subtract from AkF(x) its first v terms [i.e.,a polynomial qr(x) of degree 
at most r] and equate the rest with mxrF(x) i 

—[(1 - x)kF(x) - xpk_1(x)] - qr(x) = mxrF(x). 

From this equation, we immediately obtain: 

Theorem 2 

The generating function of an SGS(k,ms r) is of the form 

F(x) = — , (3) 
(1 - x)k - mxk + r 

where pk+r (x) is a polynomial of degree at most k + r with zero constant 
term. • 

Remark 1: It can be shown that any sequence with generating function of 
the form given in (3) is an SGSCfc,???, r) . We will not prove this because 
we will not make use of it here. 
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The G.F. for the t-bonacci sequence is 

F(x) 
1 - x - - • • - sct' 

hence, a necessary condition for this sequence to be self-generating is 
that the zeros a, 3, y» ••• of I - x - — - xt are also zeros of the 
polynomial (1 - x)k - mxk + r appearing in the form of F(x) given in Theo-
rem 1. Our aim is to show that for t > 4 we can find three zeros a, B, y 
for which this necessary condition is violated. Thus, it will be useful 
to list some facts about the roots of 

1 - x - - ' • - a?* = 0. (4) 

Remark 2: We observe that no root of (4) equals 1. Now, multiplying (4) 
by 1 - x and collecting terms transforms (4) into 

xt+1 - 2x + 1 = 0. (5) 

Remark 3: A geometrical argument about the curves y = xt+1 and y = 2x - 1 
shows that for odd t there is exactly one, for even t there are exactly 
two, real roots of (5) not equal to 1. For all t, one of these tends 
monotonically to -1 from the left as t increases. In [1], the positive 
real roots have been calculated. For t = 6 this root is a= 0.504138...; 
hence, for t ^ 6 we have a < 0.505. 

Remark 4: In [2], it was proved that (5) has exactly one root z with \z\ 
< 1 and one with \z\ =1; all other roots satisfy \z\ > 1. We shall now 
give an upper bound for the absolute values of these roots. 

Lemma 2 

The roots of (5) with \z\ > 1 satisfy \z\ < 3. 

Proof: Let z be a root of (5) with \z\ > 1. Then, since 

\z\\z* - 2| = |-l| = 1, 

we have \zt - l\ < 1, which implies l^l < 3 and, therefore, \z\ < ^J. a 

Combined with the previous lemma, our next result approximately de-
termines the positions of the roots of (5). 

Lemma 3 

For each j with 1 < j < — ^ — , Eq. (5) has a root Zj with 
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Proof: We use Gaussfs method for trinomial equations (see e.g. [3], 
pp. 397- 398). Write z = p(cos <p + i sin <p) . Then, if zt+1 - 2s + 1 is 
zero, we must have 

pt + 1cos(£ + l)<p - 2p cos <p + 1 = 0; (6) 

From (7) , we get 

pr xsin(t + l).<p - 2p sin <p = 0. (7) 

2 sin <P 
sin(£ + l)<p* 

Substituting this into (6) and using the trigonometric addition formulas, 
we obtain 

M 2 sin t<p9 (8) 

Upon substitution into (7)9 this yields 

2t+1s±ntt<p sin <p - sint+1(£ + l)<p = 0, (9) 

which determines <p. Denote the left-hand side of (9) by f(<P) • Then 

fm<o 
whereas 

/ ( ^ ) > 0 . 

By the continuity of /, the lemma follows. • 

Now let t ^ 4 and let a, (3, and y denote three nonconjugate distinct 
roots of (4) . If the t-bonacci sequence was self-generating, we would 
have (1 - a)k =.mak + r as well as (1 - 6)k = m$k + r for some k9 m9 and i>; 
hence, 

/I - q\fc _ (oL\k + r 

\l - 6/ U/ ' 
An analogous equation holds for a and y. Taking logarithms, we get 

and 

k log j ^ - (k + 20 log ! = 0 

k l o g f ^ - (k + p)log^= 0. 

To obtain nontrivial solutions for given k and r, the two equations must 
be linearly dependent. Therefore, considering the absolute values, we 
must have 
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log 1 log = log 
1 - Yl log (10) 

Denote the left- and right-hand sides of, (10) by L and i?, respectively. 
Our aim is to find roots a, (35 and y for which L $ R. 

Let t be even, t > 6. Take as a the positive real root, as 3 the 
negative real root, and as y a root with 0 < arg y < 2TT/5. (Such a 
exists, by Lemma 3.) Then the following inequalities hold, by virtue of 
Remark 3 and Lemma 2: 

0.5 < J061 < 0.505 

|B| < 1.201 

1 < IYI 

0.495 < |l - aj < 0.5 

2 < |l - 3| 

|l - y| < 1.304 

From these, we calculate L > 0.947 and R < 0.849. 

Now let t be odd, t ^ 7. As a we take the positive real root, as g 
a root with 6TT/7 < arg 3 < TT, and as y a root with 0 < arg y < 2TT/6. The 
resulting inequalities are 

0.5 < |a| < 0.505 

|3| < 1.17 

1 < |y| 

and we obtain L > 0.926 and R < 0.675 

0.495 < |l - a| < 0.5 

1.94 < |l - 3| 

|l - y| < 1.094 

The remaining cases, t = 4 and t = 5, can be settled by approximate 
calculation of <p and p using (8) and (9) ; again, roots can be found for 
which L ^ Re The details will be omitted here. • 
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