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It is unusual when one comes across a sequence of polynomials whose coef-
ficients, roots, and sums of powers can all be given explicitly. It is
our purpose to expose such a sequence of polynomials involving Fibonacci
numbers.

The general polynomial in question is of even degree, which it will
be convenient to take as 2n - 2. The coefficients are the first n Fibo-
nacci numbers as follows:

P, (x) = 2272 42?3 22 L+ Eix"'l -F x"?24+F "8
n-1 n-2

- F "t 4 eee + (<12 - (D)7,

n-3
In particular

Pi(x) =1

Py,(x) = 2> +x - 1

Py(x) = b+ xd + 222 -z + 1

P,(x) = 2% + 25 + 2% + 3% - 22 + 2 - 1

P (x) = 28 + x7 + 225 + 325 4 52t - 3x% + 2x% - x + 1.

Thus the coefficients of P (x) are the first n Fibonacci numbers followed
by the reversed sequence with alternating signs.

We shall begin by showing that the roots of P,(x) lie on two concen-
tric circles in the complex plane. More precisely, we have

Theorem A
The roots of P, (x) are given explicitly by
OLC\,;’ BC;L) (\)=1, 2, ...,T’Z'—l),
where
a=(1+V5)/2, =1 -V5)/2

and ¢, is the nth root of unity e2"*/",
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Proof: If we multiply P,(x) by x? - 2 - 1, we find that, after col-
lecting the coefficients of 1, z, %2, ..., 2?", all these coefficients
vanish except three, because

F, =F _,+F _,.
The remaining trinomial is

@ - (F, 4+ 2F,_)x” + (-1)".
Since
E% + ZF%—I = E%—l + Z7er+1 =L, = a” + B,

we see at once that

(x> -2 - DP,(x) =2 - Lx™+ (-1)" = 2®* - (a" + BMz" + (@"B").

It is obvious that the quadratic in y obtained by putting x” = y has for
its roots a” and B”.

Hence (xz-x-l)Pn(x) has for its roots o, B times all the nth roots
of unity. Omitting the extraneous roots o and R, we are left with the
2n - 2 roots of P, (x) as specified by the theorem.

As for the sum Sk(n) of the kth powers of the roots of P,(x),we have
Theorem B

(n - 1)L, 1if n divides k,
Sk(n) =

=L, otherwise.

Proof: Using Theorem A, we have
n-1 n-1 %
S, () = @k + B Tk =, -1+ ¥ gn“>.
v=1
But if »n divides k, then

n-1 n-1
> QZ“ =3 1=mn,
v=0 v=0

while if » does not divide %k,
ned kv k7 k
Eocn = (1 - @H")/a -1k =o.

We can make two statements about the factors of the discriminant D
of P,(x), which is the product of all the (nonzero) differences of its
roots, namely:
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Theorem C
The discriminant D of P, (x) is divisible by 5" 'n2"~*%,
Proof: Among the differences there are three special types:
a(c) - ;s BEh -t - BTL @ #4=1,2, ....n=1).
The product of the last type is equal in absolute value to
(o = B)2"~% = 5771,

If we allow Z and j to be zero, the first two types contribute in abso-
lute value the factor
. ~ 2
[_H_Ic" - cJ!] .
T#J

which is the square of the discriminant of x” -1, which is well known to
be n”. If we now remove the product of those differences in which 7 or J
equals zero, we remove

n-1 .
Mna-zcH?=n
. n
Jg=1

from the inner product. Hence the theorem.

We now present the following small table of the discriminant of P, :

n D

2 5

3 22 . 32 . 52

4 28 . 32 . 53

6 220 . 38 . 55

7 56 . 710 . 1310

We note that Theorems A and B, as well as their proofs, remain valid
if we replace F, by U, and L, by V,, where

Upg =0, Uy =1, U, = Au,_, +U,_,
Vo =1,V, =4, V, =AV,_, + V,_,

and o, B by (4 * VA2 + 4) /2.
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