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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy 

Fn + 2 = Fn + l + Fn> F0 = °> Fl = l> 
and 

Ln+2 = Ln + 1 + Ln> L0 = 2 ' Li = l e 

Also, a and 3 designate the roots (1 + A/5)/2 and (l-v5)/2, respectively, 
of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-496 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

Show that the centroid of the triangle whose vertices have coordinates 
(Fn » Ln) 9 (̂  + 1 ) Ln + 1) s (Fn + 69 Ln + 6) is (Fw + £f9 Ln + h) . 

B-497 Proposed by Stanley Rabinowitz, Digital Equip. Corp., Merrimack, NH 

For d an odd positive integer9 find the area of the triangle with ver-
tices (Fn5 Ln)s (Fn+ds Ln+d)9 and (Fn + 2ds Ln+ld). 

B-498 Proposed by Herta T. Freitag, Roanoke, VA 

Characterize the positive integers k such that, for all positive in-
tegers n, Fn + Fn+k = Fn+2k (mod 10). 

B-499 Proposed by Herta T. Freitag, Roanoke, VA 

Do the Lucas numbers analogue of B-498. 
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B-500 Proposed by Philip L. Mana, Albuquerque, NM 

Let A(n) and B(n) be polynomials of positive degree with integer co-
efficients such that B(k)\A(k) for all integers k. Must there exist a 
nonzero integer h and a polynomial C(n) with integer coefficients such 
that hAin) = B{n)C{n)l 

B-501 Proposed by J. O. Shallit & J. P. Yamron, U.C., Berkeley, CA 

Let a be the mapping that sends a sequence X = (x1, x2, ..., ̂ 2fc) °f 
length 2k to the sequence of length k 

KX \ A . J \«L -.tI/,-,15 2 2 f c — 1 ' 3 2k- 2 ' • • » j /cfc+1'* 

Let F= (1, 2, 3, ..., 2*% a2(V) = a(a(F)), a3(F) = a(a2(F))5 etc. Prove 
that a(F), a2(F)9 ..., a/l-1(F) are all strictly increasing sequences. 

SOLUTIONS 

Where To Find Perfect Numbers 

B-472 Proposed by Gerald E.Bergum, S. Dakota State Univ., Brookings, SD 

Find a sequence {Tn} satisfying a second-order linear homogeneous re-
currence TM = aTn_1 +bTn_2 such that every even perfect number is a term 
in {Tn} . 

Solution by Graham Lord, Universite Laval, Quebec 

A(trivial) solution to this problem is the sequence of even integers 
a = 2 and b = -1, with seeds T1 = 2 and T2 = 4. With a = 6 and b = -8, 
the sequence Tn is 2n~1(2n- 1) if T1 = 1 and T2 = 6. The proof is imme-
diate: 

Tn = 62^ _]_ - STn_2 

= 6(22n"3 - 2n"2) - 8(22n'5 - 2n~3) 

Also solved by Paul S. Bruckman, Herta T. Freitag, Edgar Krogt, Bob Prie-
lipp, Sahib Singh, Paul Smith, J. Suck, Gregory Wulczyn, and the proposer. 

Primitive Fifth Roots of Unity 

B-473 Proposed by Philip L. Mana, Albuquerque, NM 

Let 
a = ^1000s ® ~ ^1001* ° ~ ^1002' ^ = ^1003°  

I s 1 + x + ^ 2 + x3 + ^ a f a c t o r of 1 + # a + xh + x e + x d ? E x p l a i n . 
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Solution by Paul 5. Bruckman, Carmichael, CA 

It is easy to verify that {Ln (mod 5)}^=0 is periodic with period 4. 
Specifically, 

Lhk E L0 = 2 * Litfc+1 = L l " l s ^ + 2 E L 2 = 3 

and 
L ^ + 3 E L

3
 = 4 ( m o d 5) 5 k = 05 19 29 ... . 

Therefore9 a E 2 9 2 ? E l 9 < ? E 3 9 and J E 4 (mod 5). 

A polynomial p(x) divides another polynomial q(x) if q(x0) = 0 for 
all xQ such that p(x0) = 0. Letting p(x) = 1 + x + x2 + x3 + xh , we see 
that p(ar) is the cyclotomic polynomial (x5 - I) / (x - 1)9 which has four 
complex zeros equal to the complex fifth roots of unity. Let 0 denote 
any of these roots. Since p(0) = 09 it suffices to show that q(Q) = 09 

where q{x) E 1 + xa + xb + x° + xd\ 

Now 0 = 15 and it follows from this and the congruences satisfied by 
as b5 c3 and d5 that 

q(Q) = 1 + 02 + 0 + 03 + 04 = p(0) = 0. 

This shows that the answer to the problem is affirmative. 

Also solved by C. Georghiou, Walther Janous, Bob Prielipp, Sahib Singh, 
J. Suck, and the proposer. 

Sequence of Congruences 

B-474 Proposed by Philip L. Mana, Albuquerque, NM 

Are there an infinite number of positive integers n such that 

Ln + 1 E 0 (mod 2n)? 

Explain. 

Solution by Bob Prielipp, Univ. of Wisconsin-Oshkosh, WI 

Induction will be used to show that 

L2k + 1 E 0 (mod 2k+1) 

for each nonnegative integer k. Clearly, the desired result holds when 
k = 0 and when k = 1. Assume that 

L2J- + 1 E 0 (mod 2j + 1)5 

where j is an arbitrary positive integer. Then 
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L2i = q ' 2̂' + 1 - 1 

for some integer q. It is known that if m is even, L2 = L2m + 2 [see p, 
189 of "Divisibility and Congruence Relations" by Verner E. Hoggatt, Jr. 
and Gerald E. Bergum in the April 1974 issue of this journal]. Thus, 

L2j + 1 = LHlh + 1 = (L2,)2 - 2 + 1 

= (q • 2j + 1 - l)2 - 1 

= (q2 • 2^ + 2 - q • 2d+2) + (1 - 1) 

E 0 (mod 2J' + 2 ) . 

Also solved by Paul S. Bruckman, C. Georghiou, Graham Lord, Sahib Singh, 
Lawrence Somer, J. Suck, and the proposer. 

Wrong Sign 

B-475 Proposed by Herta T. Freitag, Roanoke, VA 

The problem should read: "Prove that |S3(n)| - S2(n) is 2[(n + l)/2] 
times a triangular number." 

Solution by Paul Smith, Univ. of Victoria, B.C., Canada 

It is easily shown that if n = 2m, 

(i) £3(w) = -m2(4m + 3) 

(ii) S2(n) = m2 

(iii) 2[(n + l)/2] = 2m. 

Thus 

|S3(n)| - ̂ i(n) = m2(4m + 2) = 2m • 2n^7m^r 1> = 2[(n + l)/2] • Tn. 

If n = 2m + 1, 

53(n) = -m2(4m + 3) + (2m + l)3, 

S\(n) = (m + l)2 

and 
2[(n + l)/2] = 2(m + 1). 

And now 

1̂ 3 (w) | - S1(n)2 = 2(2m3 + 5m2 + 4m + 1) = 2(m + l)(2m + 1) (m + 1) 
(continued) 
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= 2(m + 1} . <** + lH2m 4- 2) _ 2[(n + 1)/2] . ^ 

Also solved by Paul S. Bruckman, Graham Lord, Bob Prielipp, Sahib Singh, 
J. Suck, Gregory Wulczyn, and the proposer. 

Multiples of Triangular Numbers 

B-478 Proposed by Herta T. Freitag, Roanoke, VA 

Let 

Skin) = t (-DJ' + 1J*. 
i = i 

Prove that \Sh(n) + S2(n)\ is twice the square of a triangular number. 

Solution by Graham Lord, Universite Laval, Quebec 

As (k + I)1* - k* + (k + l)2 - k2 = 2(k + l)3 + 2k\ then 

Sh(2m) + S2(2m) = -2(l3 + 23 + - - - + (2m)3) 

= -2{2m(2m + l)/2}2. 
And 

Sh(2m + 1) + S2(2m + 1) = ̂  (2w) + £2 (to) + (2m + l)4 + (2m + l)2 

= 2{(2m + I)(2m + 2)/2}2. 

Also solved by Paul 5. Bruckman, Walther Janous, H. Klauser, Bob Prielipp, 
Sahib Singh, J. Suck, M. Wachtel, Gregory Wulczyn, and the proposer. 

Telescoping Series 

B-477 Proposed by Paul S. Bruckman, Sacramento, CA 

Prove that 

2^ Arctan = y Arctan y. 
n = 2 2n 

Solution by C. Georghiou, Univ. of Patras, Patras, Greece 

It is known [see, e.g.. Theorem 5 of "A Primer for the Fibonacci Num-
bers—Part IV" by V. E. Hoggatt, Jr. and I. D. Ruggles, this Quarterly, 
Vol. 1, no. 4 (1963):71] that 

2 (-Dm+ X Arc tan y~ = Arctan ̂ 5 ~ 1. 
m = l 2m 
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The problem is readily solved by noting that 

(~l)mArctan x = Arctan(-l)mar 

and that 

Arctan 1 - Arctan — — = -y Arctan —. 

Also solved by John Spraggon, J* Suck, and the proposer. 
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