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Let the circle T be parametrized by the real numbers modulo the integers. 
When a real number is used to denote a point in T9 it is implied that the 

fractional part of the number is being considered. If a9 b £ T with 
a - b 4- -55 then (a, b) will denote the shortest open arc in T whose 
endpoints are a and b. 

Fix an irrational number x. For any positive integer n let Sn denote 
the set of n open arcs in T formed by removing the points x9 . . ., nx from 
T9 and let Ln be the length of the longest arc in Sn. Then5 the result 

of Kronecker in [1, p. 363., Theorem 438] implies that Ln -*- 0 as n •> °°. 
Without further restrictions on x it is not possible to characterize the 
rate of convergence of Ln. However5 if x is an algebraic number of de-
gree d (that is9 if x satisfies a polynomial equation having degree d and 
integer coefficients), then the following result gives an upper bound for 

the rate of convergence of Ln. 

Theorem 1 

If x is an irrational algebraic number of degree ds there exists 

a(x) > 0 such that for all n > 3 

Ln < c(x)/hind'^ . (1) 

The proof of this theorem is based on the following three lemmas. 

Lemma 1 

If x is an irrational algebraic number of degree ds there exists 

k(x) > 0 such that, if (x, px + x) is an arc in Sn , then 

Length (x5 px + x) > k(x)/p(d~1K (2) 
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Proof: This inequality follows from Liouville's theorem [1, p. 160, 

Theorem 191]. 

Lemma 2 

If x is irrational and n > 3, choose p < q such that (x, px + x) and 
(x, qx + x) are arcs in Sn . Then the set Sn can be partitioned into two 

or three subsets as follows: 

Ap = {(fa, -px + kx)}: 1 < k < n - p (3) 

Aq = {(fex, qx + for)}: 1 < k < n - q (4) 

i4r = {(nx - qx + /<x, nx - px + fcx)}: l < f c < p + q - n . (5) 

Proof: Let (a, 2?) be any arc in Sn with a < b. Then (a + x, b + x) 
is an arc in Sn or i = nx or (a + x, b + x) contains the point x. In the 

latter case, a = px and b - qx. Hence, letting a = x, b = px + x, and 
successively translating the arc (a9b) by x yields the n - p arcs in set 
Ap. Similarly, set Aq is formed if a = x and fc = qx + x. Finally, if 

(a, b) is an arc not contained in Ap or ^ , then successive translation 

by x must terminate at the arc (px, qx). Since there are 

n - ( n - p ) - ( n - q ) = p + q - n 

arcs in Sn that are not in Ap or in Aq9 the proof is complete. 

Lemma 3 

Assume the hypothesis and notation of Lemma 2. Let Ip and Iq denote 

the lengths of the arcs in sets Ap and Aq, respectively. Then the arcs 

in set Av have length Ir = Ip + Iq . Furthermore, the following relations 

are valid: 

p + q > n% (6) 

plq + qjp = 1. (7) 

Proof: Clearly Jp = Ip + Jq, since 

Ir = length (px, qx) = length (px + x, qx + x) 
= length (px + x, x) + length (x, qx + x) 

= IP + I? • 
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Also, since the total number of arcs in Ap and Aq does not exceed n, 

(n - p) + (n - q) < n; 

hence, p + q > n, which is inequality (6). Finally, since the sum of the 

lengths of the arcs in Sn is 1, it follows that 

1 = (n - p)IP + (n - q)Iq + (p + q - n) (Ip + Iq) = plq + qlp, 

which is equality (7). The proof is finished. 

Proof of Theorem 1: Assume x is an irrational algebraic number of 

degree d and that k(x) > 0 is chosen as in Lemma 1 so that inequality (2) 

is valid. Then, for any n > 3, choose p < q as in Lemma 2. Therefore, 

combining inequality (2) with equality (7) yields the following inequal-

ity: 

1 > k(x)[p/qd-1 + q/p*'1] > k(x)q/pd~1
e (8) 

This combines with inequality (6) to yield 

pd~1 > k(x)q > k(x)(n - p). (9) 

Therefore, 

pd'1 + k(x)p > k(x)n. (10) 

Clearly, there exists a number g(x) > 0 which depends only on k(x) and d 

such that for every n > 3 

p > gWn1'*'1. (11) 

Substituting inequality (11) into equation (7) yields 

1 = plq + qlp > p(Iq + Ip) > gWnW-Vl,. (12) 

Since Ln < Ir9 if c(x) = l/g(x)9 then inequality (12) implies inequality 

(1). This completes the proof of Theorem 1. 

If in Lemma 1, d = 2 and x is irrational and satisfies the equation 

ox2 + bx + c = 0 and fc(a?) < (£2 - 4ac?)"1/2, then inequality (2) is valid 

for all except a finite number of values for ps 

Clearly, as n -»• °°, both p -> °°  and q ^- °°; hence, it follows from in-

equality (10) that inequality (11) is valid for all except a finite number 
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of values for n if 
g(x) = k(x)/{l + k(x)). 

Hence, the inequality (1) in Theorem 1 is valid for all except a finite 

number of values for n if 

c{x) = l/g(x) = 1 + l/k(x) > 1 + (b2 - hac)1'1. 

The smallest value of the right side of this inequality occurs for a= 1, 

&=-!, c - -1 in which case x= (1 + v5)/2 (the classical "golden ratio"), 

or x= (1 - /5)/2. 

Remark 

The referee has noted that, for algebraic numbers of degree three or 

more, the bound in Theorem 1 is not the best possible. If Roth's theorem 

[2, p. 104] is used in place of Liouville's in Lemma 1, then one obtains 

a bound of the form 

Ln < ci^ln1-*- (13) 

for any £ > 0, where o{€) is a constant depending on e. 
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