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Let the circle T be parametrized by the real numbers modulo the integers.
When a real number is used to denote a point in T, it is implied that the
fractional part of the number is being considered. If a, b € T with
a-b # .5, then (a, ») will denote the shortest open arc in T whose
endpoints are a and b.

Fix an irrational number x. For any positive integer n let S, denote
the set of n open arcs in 7 formed by removing the points x, ..., nx from
T, and let L, be the length of the longest arc in S,. Then, the result
of Kronecker in [l, p. 363, Theorem 438] implies that L, > 0 as n - o,
Without further restrictions on x it is not possible to characterize the
rate of convergence of L,. However, if & is an algebraic number of de~
gree d (that is, if x satisfies a polynomial equation having degree d and
integer coefficients), then the following result gives an upper bound for

the rate of convergence of L, .

Theorem 1
If x is an dirrational algebraic number of degree d, there exists

c(xz) > 0 such that for all n > 3
L, < c(x) mtd-1 (D

The proof of this theorem is based on the following three lemmas.

Lemma 1

If x is an irrational algebraic number of degree d, there exists

k(x) > 0 such that, if (x, px + x) is an arc in S5,, then

Length (x, px + x) > k(z)/p“@ . (2)
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Proof: This inequality follows from Liouville's theorem [1, p. 160,
Theorem 191].

Lemma 2
If x is irrational and n > 3, choose p < g such that (x, px + x) and
(x, gxr + x) are arcs in S,. Then the set S, can be partitioned into two

or three subsets as follows:

Ap = {(kx, px + kx)}: 1< k<n-p (3)
Ag = {(kx, gr + kx)}: 1< k<n-gq (4)
A, = {(nx - gx + kx, nx - px + kx)}: 1< k<p+gq-n. (5)

Proof: ©Let (a, b) be any arc in S, with a < b. Then (a + x, b + x)
is an arc in S, or b = nx or (a + £, b + x) contains the point x. In the
latter case, a = px and b = gx. Hence, letting a = x, b =px + x, and
successively translating the arc (a, b) by x yields the n - p arcs in set
Ap. Similarly, set A, is formed if a = x and b = gx + x. Finally, if
(a, b) is an arc not contained in 4, or 44, then successive translation

by x must terminate at the arc (px, gx). Since there are
n-m-p)-m=-qg) =p+qg-n

arcs in S, that are not in 4, or in A4, the proof is complete.

Lemma 3

Assume the hypothesis and notation of Lemma 2. Let I, and I; denote
the lengths of the arcs in sets Ap and A4,, respectively. Then the arcs
in set 4, have length I, = I, + I,. Furthermore, the following relations

are valid:

ptqg=zn; (6)
pl, + ql, = 1. (7)
Proof: Clearly I, = I, + I;, since

I

» length (px, gx) = length (pxr + x, gxr + x)

length (px + x, x) + length (x, gx + x)
Ip +1,.
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Also, since the total number of arcs in Ap and A, does not exceed #,
n-p)+ n-q) <mn;

hence, p + g 2 n, which is inequality (6). Finally, since the sum of the

lengths of the arcs in §, is 1, it follows that
lL=Wm-p)Ip + n~-ly + p+q-nUTp +Iy) =pl, +qlp,

which is equality (7). The proof is finished.

Proof of Theorem l: Assume x is an irrational algebraic number of

degree d and that k(x) > 0 is chosen as in Lemma 1 so that inequality (2)
is valid. Then, for any n > 3, choose p < g as in Lemma 2. Therefore,
combining inequality (2) with equality (7) yields the following inequal-
ity:

1> k@) Ip/g?t + g/p? ™1 > k(x)q/p?™t. (8)
This combines with inequality (6) to yield

pd ™t > k@)g = k(x)(n - p). 9)

Therefore,
p?™t + k(@)p > k(@)n. ' (10)
Clearly, there exists a number g(x) > O which depends only on k(x) and d

such that for every n > 3
p > glxmt/d-l, (11)
Substituting inequality (11) into equation (7) yields
1 =pIl, +ql, >pU, + 1) > glen*@ D1, (12)

Since L, € I,, if e(x) = 1/g(x), then inequality (12) implies inequality

(1). This completes the proof of Theorem 1.

If in Lemma 1, d = 2 and x is irrational and satisfies the equation
ax? + bx + ¢ =0 and k(x) < (% - 4acYY?, then inequality (2) is valid
for all except a finite number of valﬁes for p.

Clearly, as n -~ ©, both p =+ « and g > ®; hence, it follows from in-
equality (10) that inequality (11) is valid for all except a finite number
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of values for n if

gl@) = k@) /(1 + kx)).

Hence, the inequality (1) in Theorem 1 is valid for all except a finite

number of values for n if
(@) = 1/g(x) = 1 + 1/k(x) > 1 + (B2 - hae)*'?.

The smallest value of the right side of this inequality occurs for a=1,
b=-1, ¢=-1 in which case x= (1 + /g)/Z (the classical "golden ratio'),
or z= (1 - V5)/2.

Remark

The referee has noted that, for algebraic numbers of degree three or
more, the bound in Theorem 1 is not the best possible. If Roth's theorem
[2, p. 104] is used in place of Liouville's in Lemma 1, then one obtains
a bound of the form

L, <c(e)/m* ¢ (13)

for any € > 0, where c¢(g) is a constant depending on €.
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