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PROBLEMS PROPOSED IN THIS ISSUE 

H-365 Proposed by Larry Taylor, Rego Park, NY 

Call a Fibonacci-Lucas identity divisible by 5 if every term of the 
identity is divisible by 5* Prove that, for every Fibonacci-Lucas iden-
tity not divisible by 5, there exists another Fibonacci-Lucas identity not 
divisible by 5 that can be derived from the original identity in the fol-
lowing way: 

1) If necessary, restate the original identity in such a way that a 
derivation is possible. 

2) Change one factor in every term of the original identity from Fn 
to Ln or from Ln to 5Fn in such a way that the result is also an identity. 
If the resulting identity is not divisible by 5, it is the derived iden-
tity.. 

3) If the resulting identity is divisible by 5, change one factor in 
every term of the original identity from Ln to Fn or from 5Fn to Ln in 
such a way that the result is also an identity. This is equivalent to di-
viding every term of the first resulting identity by 5. Then, the second 
resulting identity is the derived identity. 

For example, FnLn = F2n can be restated as 

FT, = F + F (-l)n . 

This is actually two distinct identities, of which the derived identities 
are 

Ll = L2n + V - D " 
and 
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H-366 Proposed by Stanley Rabinowitz, Merrimack, NH 

The Fibonacci 'polynomials are defined by the recursion 

with the initial conditions f±(x) = 1 and f2(x) = #. Prove that the dis-
criminant Of fn(x) is (-l)(n-lXn-2)/22n-lnn-3 f o r n > ^ 

Remark: The idea of investigating discriminants of interesting poly-
nomials was suggested by [1]. The definition of the discriminant of a 
polynomial can be found in [2], Fibonacci polynomials are well known, 
see, for example, [3] and [4]. I ran a computer program to find the dis-
criminant of fn(x) as n varies from 2 to 11, and by analyzing the results, 
reached the conjecture given in Problem H-366. The discriminant was cal-
culated by finding the resultant of fn(x) and f^(x) using a computer alge-
bra system similar to the MACSYMA program described in [5] . Much useful 
material can be found in [6] where the problem of finding the discriminant 
of the Hermite, Laguerre, and Chebyshev polynomials is discussed. The 
discriminant of the Fibonacci polynomials should be provable using similar 
techniques; however, I was not able to do so. 
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H-367 Proposed by M. Wachtel, Zurich, Switzerland 

/\. Prove the identity: 

V(L2n - Ll_2) • (L2n + , - LD + 30 = 5F2n - 3(-l)" 

B. Prove the identities: 

= Fn + 2Fn + l, or F*+3 + (-1) 

fan r~p ) . rpz r~y j 
v v n + 1 2n+3J K n + 3 2n + 7J 

A i ^ + 3 - F2n + 5) • ( J2 + S - F 2 n + 9 ) 

/(Ji r~^ ) . (F2 ^~P > 
v n + it 2 r c + 6 y v n + 6 2n+10/ 
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SOLUTIONS 

Woopsi 

The published solution to H-335, which appeared in the May 1983 issue 
of this quarterly is incorrect, The proposer (Paul Bruckman) pointed out 
that the polynomial in question can be factored as 

(x - 1)(x2 + bx - a2)(x2 + ax - b2), 
where 

a = (1 + \/5)/2 and b = (1 - V5)/20 
The desired roots may easily be obtained from this. 

Old Timer 

H-277 Proposed by Larry Taylor, Rego Park, NY 
(Vol. 15, No. 4, December 1977) 

If p = ±1 (mod 10) is prime and x E v5 is of even order (mod p) , prove 
that x - 3, x - 2, x - 1, x, x + 1, and x + 2 are quadratic nonresidues of 
p if and only if p E 39 (mod 40). 

Solution by the proposer 

Let / E (#+l)/2 (mod p). Then f '= x+2 (mod p) . But (f/p) = {f/p) 
and therefore 

In other words, \ r / \ r / 

(2/p) = 1 (1) 

is a necessary condition to have the six consecutive quadratic nonresidues 
of p. 

Also, f2 E (a;+3)/2 (mod p) . But (2/p) = 1 has been established and, 
therefore, 

Since (x + 3)(x - 3) = -4 (mod p), we have 

But (^——) = -1 is required and, therefore, 
P (-l/p) = -1 (2) 

is another necessary condition. 
Since (-l/p)= -1 has been established and x is of even order (mod p), 

therefore (x/p) = -1. Since If1 = x - 1 (mod p), therefore 

m • m 
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Since f~3 E x - 2 (mod p) , therefore 

m - m 
In [1], page 24, the following result is given: 

Since (2/p) = 1, (-1/p) = -1, and (x/p) = -1 have been established, and 

H1) - -1 
is required, therefore 

(V^/5) = -1 (3) 
is a third necessary condition. 

There are, by inspection, no further necessary conditions. Therefore 
the logical product of (1), (2), and (3), which is equivalent to p E 39 
(mod 40), is a necessary and sufficient condition that # - 3 , # - 2 , # - l , 

x9 x + 1, and x + 2 are quadratic nonresidues of p. 
Reference 
1. Emma Lehmer. "Criteria for Cubic and Quartic Residuacity." Mathe-

matika 5 (1958):20-29. 

Late Acknowledgment: E. Schmutz and P. Wittwer solved Problem H-333. 

Not in Prime Condition 

H-3^5 Proposed by Albert A. Mull in, Huntsville, AL 
(Vol. 20, No. 4, November 1982) 

Prove or disprove: No four consecutive Fibonacci numbers can be prod-
ucts of two distinct primes. 

Solution by Lawrence Somer, Washington B.C. 

The assertion is true. We, in fact, prove the following more general 
result: 

Theorem: No three consecutive Fibonacci numbers can each be products of 
two distinct primes, except for the case 

FQ = 21 = 3 • 7, F9 = 34 = 2 • 17, F10 = 55 = 5 • 11. 

Proof: We first show that a Fibonacci number Fn can be the product 
of exactly two distinct primes only if n - 8 or n is of the form p, 2p, or 
p2, where p is a prime. A prime p is a primitive divisor of Fn if p | Fn 
but p | Fm for 0 < m < n. R. Carmichael [1] proved that Fn has a primitive 
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prime factor for every n except n = 1, 2, 6, or 12. In none of these cases 
is Fn a product of exactly two distinct primes. It is also known that if 
m | ns then Fm\Fn* Thus, if n has two or more distinct proper divisors r 
and s that are not equal to 1, 2, 6, or 12, then Fn has at least three prime 
factors-—the primitive prime factors of Fr, Fs, and Frs> respectively. 
Since F6 = 8 = 23, it follows that if n is a multiple of 6, then Fn is not 
a product of exactly two distinct prime factors. Since F1 = 1 is not a 
product of two prime factors, it follows that if Fn is a product of two 
distinct prime factors, then Fn is of the form F23 = FQ, Fp, F2 , or Fp2 , 
where p is a prime. 

By inspection, one sees that if n < 9, then i^, Fn + 15 Fn + 2 are each 
products of two distinct primes only if n = 8. Now assume n ^ 10. Among 
the three consecutive integers n, n + 1, and n + 2, one of these numbers 
is divisible by 3. Call this number k. If the Fibonacci number Fk is the 
product of two distinct primes, then k is of the form p, 2p, or p2, where 
p is prime. This is impossible, since 3|fc and k > 9. The theorem is now 
proved. 

Reference 

1. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms 
an+bn." Annals of Mathematics (2nd Ser.) 15 (1913):30-70. 

Also solved by P. Bruckman and 5. Singh. 

Pell-Mel I 

H-346 Proposed by Verner E. Hoggatt, Jr. (Deceased) 
(Vol. 20, No. 4, November 1982) 

Prove or disprove: Let P1 = 1, P2 = 2, Pn+2 = 2Pn+i + Pn f o r ^ = 1 > 
2, 3, ..., then P7 = 169 is the largest Pell number which is a square and 
there are no Pell numbers of the form 2s2 for s > 1. 

Solution by M. Wachtel, Zurich, Switzerland 
Pn + l 

1.1 The roots of x2 - 2x - 1 are 1 ± \/2, and the quotient — 5 — = 1 + v2. 

2.1 Pell numbers wit/z odd index show the identity: P2 + P^ + 1 = ?2n + 1-

2.2 P will only be a square if 

is identical with (2m + l) 2 + (2w2 + 2m)2 = (2m2 + 2m + l) 2 . 

2.3 Obviously (1.1) and (2.2) will only be satisfied if m = 2 and n = 3, 
i.e., 52 + 122= 169. For m > 2, the quotient 2m2 + 2m/2m + 1 is ris-
ing, thus 169 is the greatest Pell number which is a square. 

2.4 Using the general formula (m2 - n2)2 + (2mn)2 = (m2 + n 2 ) 2 , and set-
ting m - n = d (odd) yields: 
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(2dm + d2)2 + (2m2 + 2dm)2 = (2m2 + 2dm + d2)2. 

To satisfy (1.1), we have to set m = 2d, which leads to 5d2 + I2d2 = 
13d2> It is easy to see that (2.2) will only be satisfied if d = 1, 
whereas setting d - 3, 5, 7, ... will yield consecutive terms with 
common divisors, which is contrary to the Pell formula, 

2.5 Pell numbers with odd index always are odd and can never be 2s2. 
3.1 Pell numbers with even index show the identity. 

3.2 Obviously, Pn and Pn + 1 are coprime, from which it follows that also 
Pn + i and (Pn + Pn + 1 ) a r e coprime. Thus, P2 +2

 c a n neither be a square 
nor twice a square. 

Also solved by the proposer. 

It AT I Adds Up 

H~3̂ 7 Proposed by Paul 5. Bruckman, Sacramento, CA 
(Vol. 20f No. 4, November 1982) 

Prove the identity: 

\ 2 ——7 = E ~ ~> valid for all real x j* 0, ±1. (1) 

In particular, prove the identity: 

\t~-\Z= tjl (2) 
Solution by the proposer 

Let 

/(#) = E xn2 > where -1 < x < 1. (3) 

Theorems 311 and 312 in [1] state (using our notation): 

if(x))2 = i + 4 E 1M—- ; (4) 
n = l l - x ^ - 1 

while Theorem 385 in [1] states: 

(f(x))2 = 1 + 8 2 , where m runs through all positive inte- (5) 
1 ~ x gral values which are not multiples of 4. 

We may rearrange the terms in (4) and (5), since the series are absolutely 
convergent for \x\ < 1. Thus, 
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(f(x))2 = 1 + 4 £ (-lJ'-V2""1'" = 1+4 J2^'Z(-xZm)n 

m, n = l m = i n = 0 
J2« 'Y»777 

= 1 + 4 £ — - . 

If xm 

1 + x2m 

we note that for all x ̂  0, 

U Q O ) = 1/2 and um(x) = U-m(x) = um(l/x). 

Therefore, the transformed series for (f(x))2 converges for all real x ̂  
0, ±1, It follows that 

(f(x))2 = 2 JT — ^ \ > for a11 real x ̂  °» ±1- W 

By similar reasoning, 
» — 1 + X2" 

£ -2± = £ rixmn = £ x m £ (n + l )x m " = £ * , 
n = l ]_ _ ^ n 7773̂  = 1 777 = 1 n = Q m = l Q _ x™)2 

Therefore, using (5), 

oo yi oo l+H 

(/(a;))4 = 1 + 8 E - ^ — - 32 £- "* 
4ft n = l i _ xn n=li _ # 

i + s E — — — - 3 2 Z — 
" = i(l - xn)2 " = 1 ( 1 ~ ^ 4 n ) : 

I f 

= 1 + 8E + 8L 32 £ £ 
n ~ l ( l _ x2"-1)2 n = 1(l ~ X2n)2 n = 1(l ~ Xhn)2 

= 1 + 8f: + s £ a {(1 + x 2 * ) 2 - 4a-2"} 
n - l ( l - a ; 2 " " 1 ) 2 " = 1 ( 1 - X 1 *" ) 2 

= ! + 8 £ £ + 8 £ * (1 - X2")2 
" = 1 (1 - a : 2 "" 1 ) 2 " = 1 ( 1 - xhn)2 

» r 2 n - l » x2n 
= i + s E — + s E — 

« - i ( l _ a ; 2 " - 1 ) 2 " = 1 (1 + x 2 n ) 2 

= 1 + 8£ -. 
m = 1 ( l + (~x)m)2 

xm 
vm(x) = 

(1 - (~x)m)2' 
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we note that for all x ^ 0, 

v0(x) = 1/4 and Vm(x) = V-m(x) = vm(l/x). 

As before, the transformed series for (f(x))k must therefore converge for 
all real x ^ 0, ±1. We then see that 

(f(x))h = 4 £ ~ — , for all real a? = 0, ±1. (7) 
- — ( 1 + (~x)n)2 

Squaring both sides of (6) and comparing with (7) yields (1). As a spe-
cial case, we set x = b2, where b = (1/2) (1 - /5), and obtain (2). 

It should be pointed out that (2) was derived in [2] and given there 
as relation (59), using elliptic function theory. Indeed, relations (4) 
and (5) above have their basis in elliptic function theory. 
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