$\bullet \diamond \diamond \diamond$

ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by

A. P. HILLMAN

Assistant Editors
GLORIA C. PADILLA and CHARLES R. WALL

Send all communications regarding ELEMENTARY PROBLEMS and SOLUTIONS to PROFESSOR A. P. HILLMAN; 709 Solano Dr.,S.E.; Albuquerque, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date. Proposed problems should be accompanied by their solutions.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

Also α and β designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

PROBLEMS PROPOSED IN THIS ISSUE

B-514 Proposed by Philip L. Mana, Albuquerque, NM

$$
\text { Prove that }\binom{n}{5}+\binom{n+4}{5} \equiv n(\bmod 2) \text { for } n=5,6,7, \ldots .
$$

B-515 Proposed by Walter Blumberg, Coral Springs, FL
Let $Q_{0}=3$, and for $n \geqslant 0, Q_{n+1}=2 Q_{n}^{2}+2 Q_{n}-1$. Prove that $2 Q_{n}+1$ is a Lucas number.

B-516 Proposed by Walter Blumberg, Coral Springs, FL
Let U and V be positive integers such that $U^{2}-5 V^{2}=1$. Prove that $U V$ is divisible by 36.

B-517 Proposed by Charles R. Wall, Trident Tech. College, Charleston, SC
Find all n such that $n!+(n+1)!+(n+2)!$ is the square of an integer.

B-518 Proposed by Herta T. Freitag, Roanoke, VA
Let the measures of the legs of a right triangle be $F_{n-1} F_{n+2}$ and $2 F_{n} F_{n+1}$. What feature of the triangle has $F_{n-1} F_{n}$ as its measure?

B-519 Proposed by Herta T. Freitag, Roanoke, VA
Do as in Problem B-518 with each Fibonacci number replaced by the corresponding Lucas number.

SOLUTIONS

Lucas Addition Formula

B-490 Proposed by Herta T. Freitag, Roanoke, VA
Prove that the arithmetic mean of $L_{2 n} L_{2 n+3}$ and $5 F_{2 n} F_{2 n+3}$ is always a Lucas number.

Solution by J. Suck, Essen, GERMANY
This is an instance of the addition formula

$$
\begin{equation*}
2 L_{m+n}=L_{m} L_{n}+5 F_{m} F_{n}, m, n \in \mathbb{Z}, \tag{*}
\end{equation*}
$$

a companion to $2 F_{m+n}=F_{m} L_{n}+L_{m} F_{n}$ (compare Hoggatt's I_{38}). Proof of (*) from the Binet forms $F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, $L_{n}=\alpha^{n}+\beta^{n}, n \in \mathbb{Z}$:

$$
\begin{aligned}
L_{m} L_{n}+5 F_{m} F_{n} & =\left(\alpha^{m}+\beta^{m}\right)\left(\alpha^{n}+\beta^{n}\right)+5\left(\alpha^{m}-\beta^{m}\right)\left(\alpha^{n}-\beta^{n}\right) /(\sqrt{5} \sqrt{5}) \\
& =2 \alpha^{m} \alpha^{n}+2 \beta^{m} \beta^{n}=2\left(\alpha^{m+n}+\beta^{m+n}\right)=2 L_{m+n} .
\end{aligned}
$$

Also solved by Paul S. Bruckman, C. Georghiou, L. Kuipers, John W. Milsom, Andreas N. Philippou, George N. Philippou, Bob Prielipp, Heinz-Jürgen Seiffert, Sahib Singh, Robert L. Vogel, Charles R. Wall, and the proposer.

Application of the Addition Formula
B-491 Proposed by Larry Taylor, Rego Park, NY
Let j, k, and n be integers. Prove that

$$
F_{k} F_{n+j}-F_{j} F_{n+k}=\left(L_{j} L_{n+k}-L_{k} L_{n+j}\right) / 5
$$

Solution by J. Suck, Essen, GERMANY
Using (*) in the above solution to B-490, we have

$$
\begin{aligned}
5\left(F_{k} F_{n+j}-F_{j} F_{n+k}\right) & =2 L_{k+n+j}-L_{k} L_{n+j}-\left(2 L_{j+n+k}-L_{j} L_{n+k}\right) \\
& =L_{j} L_{n+k}-L_{k} L_{n+j} .
\end{aligned}
$$

Also solved by Paul S. Bruckman, Herta T.Freitag, C. Georghiou, L. Kuipers, John W. Milsom, George N. Philippou, Bob Prielipp, Heinz-Jürgen Seiffert, Sahib Singh, Robert L. Vogel, Charles R. Wall, and the proposer.

New Look at Previous Application

B-492 Proposed by Larry Taylor, Rego Park, NY
Let j, k, and n be integers. Prove that

$$
F_{n} F_{n+j+k}-F_{n+j} F_{n+k}=\left(L_{n+j} L_{n+k}-L_{n} L_{n+j+k}\right) / 5
$$

Solution by J. Suck, Essen, GERMANY
The same as $B-491:$ rename $k \leftrightarrow n, j \rightarrow n+j$.
Remark: A companion problem (from Hoggatt's I_{38}) would have been

$$
L_{k} F_{n+j}-L_{j} F_{n+k}=F_{j} L_{n+k}-F_{k} L_{n+j}, j, k, n \in \mathbf{z}
$$

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, John W. Milsom, George N. Philippou, Bob Prielipp, Heinz-Jürgen Seiffert, Sahib Singh, Robert L. Vogel, Charles R. Wall, and the proposer.

Exponent of 2 in Sum

B-493 Proposed by Valentina Bakinova, Rondout Valley, NY
Derive a formula for the largest integer $e=e(n)$ such that 2^{e} is an integral divisor of

$$
\sum_{i=0}^{\infty} 5^{i}\binom{n}{2 i}
$$

where $\binom{n}{k}=0$ for $k>n$.
Solution by C. Georghiou, University of Patras, GREECE
Note that, for $n \geqslant 0$,

$$
\sum_{i=0}^{\infty} 5^{i}\binom{n}{2 i}=\frac{1}{2}\left[(1+\sqrt{5})^{n}+(1-\sqrt{5})^{n}\right]=2^{n-1} L_{n} .
$$

From $2 \nmid L_{3 n \pm 1}, 2\left|L_{6 n}, 4 \nmid L_{6 n}, 4\right| L_{6 n+3}$, and $8 \nmid L_{6 n+3}$, we get

$$
e(n)=\left\{\begin{aligned}
n & \text { if } n \equiv 0(\bmod 6) \\
n+1 & \text { if } n \equiv 3(\bmod 6) \\
n-1 & \text { if } n \not \equiv 0(\bmod 3)
\end{aligned}\right.
$$

Also solved by Paul|S. Bruckman, L. Kuipers, Sahib Singh, J. Suck, Charles R. Wall, and the proposer.

Sum of Consecutive Integers

B-494 Proposed by Philip L. Mana, Albuquerque, NM
For each positive integer n, find positive integers a_{n} and b_{n} such that $101 n$ is the following sum of consecutive positive integers:

$$
a_{n}+\left(a_{n}+1\right)+\left(a_{n}+2\right)+\cdots+\left(a_{n}+b_{n}\right)
$$

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
We begin by observing that

$$
a_{n}+\left(a_{n}+1\right)+\left(a_{n}+2\right)+\cdots+\left(a_{n}+b_{n}\right)=\left(b_{n}+1\right) a_{n}+b_{n}\left(b_{n}+1\right) / 2
$$

Next, we 1et
$a_{n}=51-n$ and $b_{n}=2 n-1$ for each integer $n, 1 \leqslant n \leqslant 50$
and
$a_{n}=n-50$ and $b_{n}=100$ for each integer $n, n \geqslant 51$.
Clearly, a_{n} and b_{n} are always positive integers. Also,
(1) if $a_{n}=51-n$ and $b_{n}=2 n-1$, then

$$
\begin{aligned}
\left(b_{n}+1\right) a_{n}+b_{n}\left(b_{n}+1\right) / 2 & =(2 n)(51-n)+(2 n-1) n \\
& =102 n-2 n^{2}+2 n^{2}-n \\
& =101 n ;
\end{aligned}
$$

(2) if $a_{n}=n-50$ and $b_{n}=100$, then

$$
\begin{aligned}
\left(b_{n}+1\right) a_{n}+b_{n}\left(b_{n}+1\right) / 2 & =101(n-50)+50(101) \\
& =101 n-50(101)+50(101) \\
& =101 n .
\end{aligned}
$$

Also solved by Ada Booth, Paul S. Bruckman, M. J. DeLeon, Herta T. Freitag, H. Klauser \& E. Schmutz \& M. Wachtel, L. Kuipers, Sahib Singh, J. Suck, and the proposer.

Sum of Consecutive Squares
B-495 Proposed by Philip L. Mana, Albuquerque, NM
Characterize an infinite sequence whose first 24 terms are:
$1,4,5,9,13,14,16,25,29,30,36,41,49,50,54,55$, $61,64,77,81,85,86,90,91, \ldots$
[Note that all perfect squares occur in the sequence.]

Solution by Paul S. Bruckman, Carmichael, CA
The indicated sequence may be characterized as the sequence of positive integers which can be expressed either as squares or as sums of consecutive squares, then arranged in increasing order. Equivalently, if the given sequence is denoted by $\left(x_{n}\right)_{n=1}^{\infty}$ and if

$$
S_{n}=\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \quad\left(\text { with } S_{0} \equiv 0\right) \text {, }
$$

the sequence is characterized as the set of all differences $S_{a}-S_{b}$, where $a>b \geqslant 0$, in increasing order.

Also solved by Ada Booth, John W. Milsom, E. Schmutz \& M. Wachtel, J. Suck, and the proposer.

