PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES

EDUARD FUCHS
University of J. E. Purkyne, 66295 Brno, Czechoslovakia
(Submitted June 1982)

1. INTRODUCTION

By a poset we mean a partially ordered set. If G, H are posets, then their cardinal power G^{H} is defined by Birkhoff (see [1], p. 55) as a set of all order-preserving mappings of the poset H into the poset G with an ordering defined as follows.

For $f, g \in G^{H}$ there holds $f \leqslant g$ if and only if $f(x) \leqslant g(x)$ for every $x \in H$.

If G is a lattice, then G^{H} is usually called a function lattice. (It is easy to prove that if G is a lattice, or modular lattice, or distributive one, then so is G^{H} (see [1], p. 56).

Let A be a poset and let $a, b \in A$ with $\alpha<b$. If no $x \in A$ exists such that $a<x<b$, then b is said to be a successor of the element a. Let $n(a)$ denote the number of all the successors of the element $\alpha \in A$. Further, let $c(A)$ denote the number of all the components of the poset A, i.e., the number of its maximal continuous subsets.

Finally, if X is a set, then $|X|$ is its cardinal number.
Now we can introduce the following definition.
Definition: Let $A \neq \phi$ be a finite poset. Put
(a) $n(A)=\sum_{a \in A} n(\alpha)$
(b) $d(A)=\frac{n(A)}{|A|}$
(c) $v(A)=n(A)-|A|+c(A)$

The number $d(A)$ is called the density of the poset A, the number $v(A)$ is called the cyclomatic number of the poset A.

42
[Feb.

PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES

It is evident that, for a finite poset $A, n(A)$ is equal to the number of edges in the Hasse diagram of the poset A, thus $v(A)$ is the cyclomatic number of the mentioned Hasse diagram in the sense of graph theory.

Now our aim is to determine the density and the cyclomatic number of functional lattices G^{H}, where G, H are finite chains.

2. PARTITIONS AND COMPOSITIONS

The symbols N, N_{0}, will always denote, respectively, the positive integers, the nonnegative integers.

Let $k, n, s \in N$. By a partition of n into k summands, we mean, as usual, a k-tuple $a_{1}, a_{2}, \ldots, a_{k}$ such that each $\alpha_{i} \in N, \alpha_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{k}$, and

$$
\begin{equation*}
a_{1}+\cdots+a_{k}=n . \tag{2.1}
\end{equation*}
$$

Let $P(n, k)$ denote the set of all the partitions of the number n into k summands. Let $P(n, k, s)$ denote the set of those partitions of n into k summands, in which the summands are not greater than the number s, i.e., such that $s \geqslant a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{k} \geqslant 1$.

By a composition of the number n into k summands, we mean an ordered K-tuple ($\alpha_{1}, \ldots, \alpha_{k}$), with $\alpha_{i} \in N$, satisfying (2.1). Let $C(n, k)$ denote the set of all these compositions.

Finally, let $D(n, k)$ denote the set of all the compositions of the number n into k summands $\alpha_{i} \in N_{0}$ [so that $\left.C(n, k) \subseteq D(n, k)\right]$.

It is easy to determine the number of elements of the sets $P(n, k)$, $P(n, k, s), C(n, k)$, and $D(n, k)$-see, e.g., [2], [3], and [6].

Theorem 1: For $k, n, s \in N$,
(a) $|P(n, k)|=\sum_{i=1}^{k}|P(n-k, i)|$
(b) $|P(n, k, s+1)|=\sum_{i=1}^{k}|P(n-k, i, s)|$
(c) $|C(n, k)|=\binom{n-1}{k-1}$
(d) $|D(n, k)|=\binom{n+k-1}{k-1}$

1984]

PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES

Definition: Define the binary relation ρ on the set $D(n, k)$ as follows:
If $\alpha, \beta \in D(n, k), \alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \beta=\left(b_{1}, \ldots, b_{k}\right)$, then $\alpha \rho \beta$ if and only if $i \in\{2,3, \ldots, k\}$ exists such that

$$
b_{i-1}=a_{i-1}+1, b_{i}=a_{i}-1, \text { and } b_{j}=a_{j} \text { for remaining } j
$$

Further, put, for $\alpha \in D(n, k)$,

$$
\Gamma(\alpha)=\{\beta \in D(n, k) ; \alpha \rho \beta\} .
$$

Remark: Thus, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in D(n, k)$, the elements from $\Gamma(\alpha)$ are all the compositions of the form

$$
\left(a_{1}, \ldots, \alpha_{i-1}+1, a_{i}-1, \alpha_{i+1}, \ldots, a_{k}\right)
$$

From the definitions of the set $D(n, k)$ and the relation ρ, it follows that $|\Gamma(\alpha)|$ is equal to the number of nonzero summands $\alpha_{i}, i=2, \ldots, k$, in α.

Definition: For $i \in N_{0}$, we denote

$$
\begin{equation*}
D^{i}(n, k)=\{\alpha \in D(n, k) ;|\Gamma(\alpha)|=i\} \tag{2.6}
\end{equation*}
$$

Theorem 2: For $k, n \in N, i \in N_{0}$,

$$
\begin{equation*}
\left|D^{i}(n, k)\right|=\binom{n}{i}\binom{k-1}{i} \tag{2.7}
\end{equation*}
$$

Proof: Let $\alpha=\left(a_{1}, \ldots, a_{k}\right) \in D^{i}(n, k)$. Therefore, according to the above Remark, there are only i numbers that are nonzeros from all the summands $a_{2}, \ldots, a_{k}, a_{1}$ being arbitrary. If now $a_{1}=j$, then by (2.4) there exist precisely

$$
\binom{k-1}{i}\binom{n-j-1}{i-1}
$$

compositions of the required form. Hence,

$$
\left|D^{i}(n, k)\right|=\binom{k-1}{i}\left[\binom{n-1}{i-1}+\binom{n-2}{i-1}+\cdots+\binom{i-1}{i-1}\right]=\binom{k-1}{i}\binom{n}{i} .
$$

Remark: It is evident that

$$
D^{i}(n, k) \neq \phi \text { if and only if } i \leqslant \min [k-1, n] .
$$

44
[Feb.

PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES

Let Y denote the set of all nonincreasing sequences $\left(\alpha_{1}, \alpha_{2}, \ldots, a_{n}\right.$, \therefore.) of nonnegative integers in which there are only finitely many $a_{i} \neq 0$, i.e., such that

$$
\sum_{i=1}^{\infty} a_{i}<\infty
$$

We define the ordering \leqslant on the set Y by:
$\left(a_{1}, a_{2}, \ldots\right) \leqslant\left(b_{1}, b_{2}, \ldots\right)$ if and only if $\alpha_{i} \leqslant b_{i}$ for every $i \in N$. Then the poset Y is evidently a distributive lattice. It is the so-called Young lattice. For more details on its properties see, e.g., [4] and [5].

Identifying $\left(a_{1}, \ldots, a_{k}\right) \in P(n, k)$ with $\left(a_{1}, \ldots, a_{k}, 0,0, \ldots\right) \in Y$, we henceforth consider the partitions as elements of the Young lattice.

The elements with a height n in Y are evidently all the partitions of the number n. [The element with the height 0 is obviously the sequence

$$
(0,0, \ldots)]
$$

Definition: For $\alpha \in Y$, the principal ideal $Y(\alpha)$ is given by

$$
Y(\alpha)=\{\beta \in Y ; \beta \leqslant \alpha\} .
$$

Definition: Let σ denote the covering relation on the lattice Y, i.e., for $\alpha, \beta \in Y$,
$\alpha \sigma \beta$ if and only if β is a successor of the element α.
The next result follows immediately from the definition of the Young lattice.

Theorem 3: Let $\alpha, \beta \in Y, \alpha=\left(\alpha_{1}, a_{2}, \ldots\right), \beta=\left(b_{1}, b_{2}, \ldots\right)$. Then $\alpha \sigma \beta$ if and only if there exists $i \in N$ such that $b_{i}=\alpha_{i}+1$, and $a_{j}=b_{j}$ for $j \in N, j \neq i$.

Definition: Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in Y$, let r be the number $\alpha_{i} \in \alpha$, with $\alpha_{i} \neq 0$. Then canonical mapping $f: Y(\alpha) \rightarrow D\left(r, 1+\alpha_{1}\right)$ is defined as follows:

For $\beta=\left(b_{1}, b_{2}, \ldots\right) \in Y(\alpha)$, the image $f(\beta)$ is the composition

$$
\left(c_{1}, c_{2}, \ldots, c_{1+a_{1}}\right) \in D\left(r, 1+\alpha_{1}\right)
$$

for which c_{i} is the number of values of j for which $b_{j}=a_{1}+1-i$ in the r-tuple (b_{1}, \ldots, b_{r}).

Remark: If $\beta=\left(b_{1}, \ldots, b_{r}, 0,0, \ldots\right) \in Y(\alpha)$, then evidently $0 \leqslant b_{i} \leqslant \alpha_{i}$ for all $i=1, \ldots, r$. The image of the sequence β under the canonical mapping f is the composition ($c_{1}, \ldots, c_{1+a_{1}}$) with the following properties:
c_{1} is the number of integers a_{1} in $\left(b_{1}, \ldots, b_{r}\right), c_{2}$ is the number of values of j for which $b_{j}=a_{1}-1$ in $\left(b_{1}, \ldots, b_{r}\right)$, etc., until $c_{1}+a_{1}$ is the number of zeros in (b_{1}, \ldots, b_{r}).

Theorem 4: Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}, 0,0, \ldots\right) \in Y$, with $\alpha_{1}=\cdots=\alpha_{r}=\mathcal{K}>0$. Then

$$
\begin{equation*}
(Y(\alpha), \sigma) \cong[D(r, k+1), \rho] \tag{2.8}
\end{equation*}
$$

Proof: Let $f: Y(\alpha) \rightarrow D(r, k+1)$ be the canonical mapping. Then f is evidently a bijection. Let $\beta, \gamma \in Y(\alpha)$. If $\beta=\left(b_{1}, b_{2}, \ldots\right)$ and if $\beta \sigma \gamma$, then by Theorem 3, $\gamma=\left(b_{1}, \ldots, b_{i}+1, b_{i+1}, \ldots\right)$ for some i. Denote b_{i} by t. Then there is in the sequence γ one less t and one more $t+1$ than in the sequence β. Combining this fact with the definition of the relation ρ on $D(r, k+1)$, we have

$$
\begin{equation*}
\text { Bor if and only if } f(\beta) \rho f(\gamma) \text {. } \tag{2.9}
\end{equation*}
$$

Thus, the canonical mapping f is an isomorphism from $(Y(\alpha), \sigma)$ on

$$
[D(r, k+1), \rho] .
$$

3. DENSITY AND CYCLOMATIC NUMBER OF FUNCTION LATTICES

Let P, Q be arbitrary posets. If $P=\phi, Q \neq \phi$, then $P^{Q}=\phi$. If $Q=\phi$, then $P^{Q}=\{\phi\}, P$ being arbitrary. Henceforth, we shall consider only such functional lattices P^{Q}, where $P \neq \phi \neq Q$.

The basic properties of the functional lattices P^{Q}, where P, Q are finite chains, are described in [6]. Namely, there holds

Theorem 5: Let $p, q \in N$, let P, Q be chains such that $|P|=p,|Q|=q$. Then
(a) $\left|p^{Q}\right|=\binom{p+q-1}{q}$
(b) For $i \in N_{0}$, the number of elements in P^{Q} with height i, is equal to $|P(q+i, q, p)|$.
(c) $P^{Q} \cong Y(\alpha)$, where $\alpha=\left(a_{1}, \ldots, a_{q}, 0,0, \ldots\right), a_{1}=\ldots=a_{q}=p-1$.

Proof: The assertion (a) is trivial. The proof of the assertion (b)
is in [6], p. 9. The assertion (c) results from the following: Put

$$
P=\{0<1<\cdots<p-1\}, Q=\{1<2<\cdots<q\}
$$

The isomorphism $F: P^{Q} \rightarrow Y(\alpha)$ is given by

$$
F(f)=(f(q), f(q-1), \ldots, f(1), 0,0, \ldots),
$$

for each $f \in P^{Q}$.
Lemma: For $k, n \in N$,
(a) $\sum_{i=0}^{n}\binom{k}{i}\binom{n}{i}=\binom{k+n}{n}$
(b) $\sum_{i=0}^{n} i\binom{k}{i}\binom{n}{i}=\frac{k n}{k+n}\binom{k+n}{n}$

Proof: (a) The assertion (3.2) is well known.
(b) In [8], Hagen states without proofs many combinatorial identities. As the 17 th there is stated:

$$
\begin{equation*}
\sum_{i=0}^{n} \frac{a+b i}{(p-i d)(q+i \bar{d})}\binom{p-i d}{n-i}\binom{q+i d}{i}=\frac{a(p+q-n i)+b n q}{q(p+q)(p-i d)}\binom{p+q}{n} \tag{3.4}
\end{equation*}
$$

The first very complicated proof of formula (3.4) was given by Jensen in 1902. The simplest of the known proofs is given in [9].

Substituting $a=0, b=1, p=n, q=k, d=0$ into (3.4), we obtain

$$
\sum_{i=0}^{n} \frac{i}{k n}\binom{n}{n-i}\binom{k}{i}=\frac{k n}{(k+n) k n}\binom{k+n}{n},
$$

by which formula (3.3) is proved.
Theorem 6: Let $p, q \in N$, let P, Q be chains such that $|P|=p,|Q|=q$. Then

$$
\begin{equation*}
n\left(p^{Q}\right)=\frac{q(p-1)}{p+q-1} \cdot\binom{p+q-1}{q} \tag{3.5}
\end{equation*}
$$

Proof: If $p=1$, then $\left|P^{Q}\right|=1$ so that $n\left(P^{Q}\right)=0$ and (3.5) is evidently valid. Thus let $p>1$. By Theorem 5(c), we have $P^{Q} \cong Y(\alpha)$, where 1984]
$\alpha=\left(\alpha_{1}, \ldots, \alpha_{q}, 0,0, \ldots\right), \alpha_{1}=\cdots=\alpha_{q}=p-1$. Let $f: Y(\alpha) \rightarrow D(p, q)$ be the canonical mapping. For $\beta \in Y(\alpha), n(\beta)=|\Gamma[f(\beta)]|$ by Theorem 4. Combining this fact with (2.7) and (3.3), we obtain

$$
n\left(P^{Q}\right)=\sum_{\beta \in Y(\alpha)} n(\beta)=\sum_{i=0}^{q} i\binom{q}{i}\binom{p-1}{i}=\frac{q(p-1)}{p+q-1}(p+q-1) .
$$

Remark: Combining (3.1), (3.5), and the proof of Theorem 6, we have

$$
\begin{equation*}
n\left(p^{Q}\right)=\frac{q(p-1)}{p+q-1}\binom{p+q-1}{q}=\frac{q(p-1)}{p+q-1} \cdot\left|p^{Q}\right|=\sum_{i=1}^{q} i\binom{q}{i}(p-1) . \tag{3.6}
\end{equation*}
$$

Now it is easy to determine the density and also the cyclomatic number of the functional lattice P^{Q}.

Theorem 7: Let $p, q \in N$, let P, Q be chains such that $|P|=p,|Q|=q$. Then
(a) $d\left(p^{Q}\right)=\frac{q(p-1)}{p+q-1}$
(b) $\quad v\left(P^{Q}\right)=\sum_{i=1}^{q}(i-1)\binom{q}{i}\binom{p-1}{i}$

Proof: (a) The assertion (3.7) follows from (1.2) and (3.6).
(b) If A is a connected poset, then $c(A)=1$. Combining this fact with (1.3), (3.6), (3.1), and (3.2), we obtain

$$
\begin{aligned}
\nu\left(P^{Q}\right) & =\sum_{i=1}^{q} i\binom{q}{i}\binom{p-1}{i}-\binom{p+q-1}{q}+1 \\
& =\sum_{i=1}^{q} i\binom{q}{i}\binom{p-1}{i}-\sum_{i=0}^{q}\binom{q}{i}\binom{p-1}{i}+1 \\
& =\sum_{i=1}^{q} i\binom{q}{i}\binom{p-1}{i}-\sum_{i=1}^{q}\binom{q}{i}\binom{p-1}{i}=\sum_{i=1}^{q}(i-1)\binom{q}{i}\binom{p-1}{i} \cdot
\end{aligned}
$$

Remark: Combining (3.6), (3.8), and (3.1), we obtain
$\nu\left(p^{Q}\right)=\sum_{i=1}^{q}(i-1)\binom{q}{i}\binom{p-1}{i}=\frac{q(p-1)}{p+q-1}\binom{p+q-1}{q}-\binom{p+q-1}{q}+1$.

Let $p, q, r, s \in N$, and let P, Q, R, S be chains such that $|P|=p$, $|Q|=q,|R|=r,|S|=s . \quad B y$ (3.7) and (3.8),
if $r=q+1, s=p-1$, then $d\left(P^{Q}\right)=d\left(R^{S}\right), \nu\left(P^{Q}\right)=v\left(R^{S}\right)$.

48

But in [7] we have proved that for $p>1$,

$$
P^{Q} \cong R^{S} \text { if and only if } p=r, q=s \text { or } r=q+1, s=p-1
$$

(3.10) is now evident.

REFERENCES

1. G. Birkhoff. Lattice Theory. Third (New) Edition. New York, 1967.
2. L. Carlitz. "Restricted Compositions." The Fibonacci Quarterly 14, No. 3 (1976):254-64.
3. M. Hall, Jr. Combinatorial Theory. Toronto \& London: Waltham, 1967.
4. R. P. Stanley. "The Fibonacci Lattice." The Fibonacci Quarterly 13, No. 3 (1975):215-32.
5. G. Kreweras. "Sur une classe de problémes de denombrement lies au treillis des partitions des entiers." Cahiers du BURO 6 (1965):3-103.
6. E. Fuchs. "On Partitions with Limited Summands." Arch. Math. 15 (1979):1-12.
7. E. Fuchs. "On the O-Category of Finite Chains." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 28 (1982):63-65.
8. J. G. Hagen. Synopsis der höheren Mathematik, I. Band, Berlin, 1891.
9. H. W. Gould \& J. Kaucký. "Evaluation of Some Binomial Summations." J. Comb. Theory 1 (1966):233-47.
