ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS
 AND GENERALIZED FIBONACCI REPRESENTATIONS

V. E. HOGGATT, JR.
(Deceased)

MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, CA 95192
(Submitted April 1980)

ABSTRACT

The generalized Fibonacci numbers $\left\{u_{n}\right\}$,

$$
u_{n+2}=u_{n+1}+u_{n}, u_{1}=a, u_{2}=b,(a, b)=1,
$$

induce a unique additive partition of the set of positive integers formed by two disjoint subsets such that no two distinct elements of either subset have u_{n} as their sum. We examine the values of a special function

$$
E_{n}(m)=m u_{n-1}-u\left[m u_{n-1} / u_{n}\right], m=1,2, \ldots, u_{n}-1, n \geqslant 2,
$$

and find relationships to the additive partition of N as well as to $W y-$ thoff's pairs and to representations of integers using the double-ended sequence $\left\{u_{n}\right\}_{-\infty}^{\infty}$ and the extended sequence $\left\{u_{n}\right\}_{-m}^{\infty}$. We write a Zeckendorf theorem for double-ended sequences and show completeness for the extended sequences.

1. TABULATION OF $E_{n}(m)$ FOR THE FIBONACCI AND LUCAS SEQUENCES

We begin with the ordinary Fibonacci sequence $\left\{F_{n}\right\}$, where $F_{1}=1$, and $F_{2}=1$, and $F_{n+2}=F_{n+1}+F_{n}$. We tabulate and examine a special function $E_{n}(m)$, defined by

$$
\begin{equation*}
E_{n}(m)=m F_{n-1}-F_{n}\left[m F_{n-1} / F_{n}\right], m=1,2, \ldots, F_{n}-1, n \geqslant 2, \tag{1.1}
\end{equation*}
$$

where $[x]$ is the greatest integer function. Notice that $n=2$ gives the trivial $E_{2}(m)=0$ for all m, while $E_{3}(m)$ is 1 for m odd and for m even.

The table of values for $E_{n}(m)$ (Table 1.1) reveals many immediate patterns. First, $E_{n}(m)$ is periodic with period F_{n}, and the 2 th term in the
cycle is $E_{n}(r)=r F_{n-1}\left(\bmod F_{n}\right)$. We could easily show, using properties of modular arithmetic and of the greatest integer function, that

$$
E_{n}(1)=F_{n-1}, E_{n}(2)=F_{n-3}, E_{n}(3)=L_{n-2}, E_{n}(4)=2 F_{n-3} .
$$

Also, counting from the end of a cycle, we have

$$
E_{n}(-1)=F_{n-2}, E_{n}(-2)=2 F_{n-2}, E_{n}(-3)=F_{n-4}, E_{n}(-4)=L_{n-3},
$$

which also can be established by elementary methods, but these apparent patterns are not the main thrust of this paper.

TABLE 1.1
VALUES OF $E_{n}(m)$ FOR THE FIBONACCI SEQUENCE

$E_{n}(m):$	$\begin{gathered} n=4 \\ 2 m-3\left[\frac{2 m}{3}\right] \end{gathered}$	$\begin{gathered} n=5 \\ 3 m-5\left[\frac{3 m}{5}\right] \end{gathered}$	$\begin{gathered} n=6 \\ 5 m-8\left[\frac{5 m}{8}\right] \end{gathered}$	$\begin{gathered} n=7 \\ 8 m-13\left[\frac{8 m}{13}\right] \end{gathered}$	$\begin{gathered} n=8 \\ 13 m-21\left[\frac{13 m}{21}\right] \end{gathered}$
$m=1$	2	3	5	8	13
$m=2$	1	1	2	3	5
$m=3$	0	4	7	11	18
$m=4$	2	2	4	6	10
$m=5$	1	0	1	1	2
$m=6$	0	3	6	9	15
$m=7$	2	1	3	4	7
$m=8$	1	4	0	12	20
$m=9$	0	2	5	7	12
$m=10$	2	0	2	2	4
$m=11$	1	3	7	10	17
$m=12$	0	1	4	5	9
$m=13$	2	4	1	0	1
$m=14$	1	2	6	8	14
$m=15$	0	0	3	3	6
$m=16$	2	3	0	11	19
$m=17$	1	1	5	6	11
$m=18$	0	4	2	1	3
$m=19$	2	2	7	9	16
$m=20$	1	0	4	4	8
$m=21$	0	3	1	12	0

We need two other number sequences, derived from the Fibonacci numbers. We write the disjoint sets $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$, which are formed by making a $1984]$

ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS AND GENERALIZED FIBONACCI REPRESENTATIONS

partition of the positive integers such that no two distinct members from A and no two distinct members from B have a sum which is a Fibonacci number. We also write the first few Wythoff pairs (a_{n}, b_{n}) [1] for inspection.

n	A_{n}	B_{n}
1	1	2
2	3	4
3	6	5
4	8	7
5	9	10
6	11	12
7	14	13
8	16	15
9	17	18
10	19	20
\ldots	\ldots	\ldots

n	a_{n}	b_{n}
1	1	2
2	3	5
3	4	7
4	6	10
5	8	13
6	9	15
7	11	18
8	12	20
9	14	23
10	16	26
\ldots	\cdots	\ldots

We note that the Wythoff pairs are given by

$$
\begin{equation*}
a_{n}=[n \alpha] \quad \text { and } \quad b_{n}=\left[n \alpha^{2}\right] \tag{1.2}
\end{equation*}
$$

where $[x]$ is the greatest integer contained in x and $\alpha=(1+\sqrt{5}) / 2$ is the Golden Section ratio. Also, $b_{n}=a_{n}+n$, and a_{n} is the smallest integer not yet used. It is also true that no two distinct b_{n} 's have a Fibonacci number as their sum, and that $\left\{b_{n}\right\} \subset\left\{B_{n}\right\}$.

Now, examine the periods of the values of $E_{n}(m)$:
$n=5:$
$n=6:$
$n=7:$
$\left.\left.\begin{array}{l}3 \\ 1 \\ 4\end{array}\right\} \begin{array}{ll}3 \\ a_{n} & 1\end{array}\right\} A_{n}$
$\left.\left.\begin{array}{l}5 \\ 2 \\ 7\end{array}\right\} b_{n} \quad \begin{array}{l}5 \\ 2 \\ 7 \\ 4\end{array}\right\} B_{n}$
2\} $\left.b_{n} \begin{array}{l}4 \\ 2\end{array}\right\} B_{n}$

$$
\left.\left.\begin{array}{l}
4 \\
1 \\
6 \\
3
\end{array}\right\} \begin{array}{ll}
a_{n} & 1 \\
6 \\
3
\end{array}\right\} A_{n}
$$

ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS
 AND GENERALIZED FIBONACCI REPRESENTATIONS

$$
n=8:
$$

Notice that the integers 1, 2, 3, ..., $F_{n}-1$, all appear, but not in natural order. Each cycle is made up of early values of $\left\{\alpha_{n}\right\}$ and $\left\{b_{n}\right\}$, and of early values of $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$, not in order, but without omissions.

If we apply $E_{n}(m)$ to the Lucas numbers L_{n}, defined by $L_{1}=1, L_{2}=3$, $L_{n+2}=L_{n+1}+L_{n}$, so that we consider

$$
\begin{equation*}
E_{n}(m)=m L_{n-1}-L_{n}\left[m L_{n-1} / L_{n}\right], m=1,2, \ldots, L_{n}-1 \tag{1.3}
\end{equation*}
$$

then we get the integers $1,2,3, \ldots, L_{n}-1$ in some order. Recall our generalized Wythoff numbers a_{n}, b_{n}, and $c_{n}[1, \mathrm{p} .200$. We obtain within each cycle a segment of $\left\{a_{n}\right\}$, a segment of $\left\{c_{n}\right\}$, and a segment of $\left\{b_{n}\right\}$, where each segment is complete (the first few terms of each sequence without omission, but not in order). This same cycle contains the first few terms of $\left\{A_{n}\right\}$, out of order, but without omissions, followed by the first few terms of $\left\{B_{n}\right\}$, where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ is the unique split of the positive integers induced by the Lucas sequence such that no two elements of $\left\{A_{n}\right\}$, and no two elements of $\left\{B_{n}\right\}$, have a Lucas number for their sum.

To illustrate the Lucas case, we write the first twelve values of the generalized Wythoff numbers, and early values of the partition sets:

n	a_{n}	b_{n}	c_{n}
1	1	3	2
2	4	7	6
3	5	10	9
4	8	14	13
5	11	18	17
6	12	21	20

n	A_{n}	B_{n}
1	1	2
2	4	3
3	5	6
4	8	7
5	9	10
6	11	13

```
ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS
``` AND GENERALIZED FIBONACCI REPRESENTATIONS
\begin{tabular}{rlll}
\(n\) & \(a_{n}\) & \(b_{n}\) & \(c_{n}\) \\
\hline 7 & 15 & 25 & 24 \\
8 & 16 & 28 & 27 \\
9 & 19 & 32 & 31 \\
10 & 22 & 36 & 35 \\
11 & 23 & 39 & 38 \\
12 & 26 & 43 & 42
\end{tabular}
\begin{tabular}{rrr}
\(n\) & \(A_{n}\) & \(B_{n}\) \\
\hline 7 & 12 & 14 \\
8 & 15 & 17 \\
9 & 16 & 18 \\
10 & 19 & 20 \\
11 & 22 & 21 \\
12 & 23 & 24 \\
13 & 26 & 25 \\
14 & 27 & 28
\end{tabular}

Now, examine the periods of values of \(E_{n}(m)\) for the Lucas sequence:

For comparison, the generalized Wythoff numbers are formed by letting \(a_{n}\) be the smallest positive integer not yet used, letting \(c_{n}=b_{n}-1\), and
forming \(b_{n}=a_{n}+d_{n}\), where \(d_{n} \neq b_{k}+1\). Letting the generalized Wythoff numbers be denoted with an asterisk, we can express them in terms of Wythoff pair numbers as
\[
a_{n}^{*}=2 a_{n}-n, \quad b_{n}^{*}=b_{n}+n=a_{n}+2 n, \quad c_{n}^{*}=a_{n}+2 n-1=a_{a_{n}}+n
\]

It is also true that \(a_{i}^{*}+a_{j}^{*} \neq L_{m}, b_{i}^{*}+b_{j}^{*} \neq L_{m}\), and the Lucas generalized Wythoff numbers and the Lucas partition sets have the subset relationships \(\left\{a_{n}\right\} \subset\left\{A_{n}\right\}\) and \(\left\{b_{n}\right\} \subset\left\{B_{n}\right\}\).

\section*{2. ZECKENDORF THEOREM FOR DOUBLE-ENDED SEQUENCES}

Before considering representations and additive partitions regarding the generalized Fibonacci sequence \(\left\{u_{n}\right\}_{-m}^{\infty}\), where \(u_{1}=a\) and \(u_{2}=b, u_{n+2}=\) \(u_{n+1}+u_{n}\), we consider representations of the integers in terms of specialized \(\left\{u_{n}\right\}\), where \(u_{1}=1\) and \(u_{2}=p\).

Theorem 2.1 (Zeckendorf Theorem for double-ended sequences): Let \(p \geqslant 1\) be a positive integer, and let \(u_{n+2}=u_{n+1}+u_{n}, u_{1}=1, u_{2}=p\). Then every positive integer has a representation from \(\left\{u_{n}\right\}_{-\infty}^{\infty}\), provided that no two consecutive \(u_{j}\) are in the same representation.

Proof: We need to recall two major results from earlier work. David Klarner [2] has proved

Klarner's Theorem: Given the nonnegative integers \(A\) and \(B\), there exists a unique set of integers \(\left\{k_{1}, k_{2}, k_{3}, \ldots, k_{r}\right\}\) such that
\[
\begin{aligned}
& A=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}} \\
& B=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1}
\end{aligned}
\]
for \(\left|k_{i}-k_{j}\right| \geqslant 2, i \neq j\), where each \(F_{i}\) is an element of the sequence \(\left\{F_{i}\right\}_{-\infty}^{\infty}\).

When \(u_{1}=1\) and \(u_{2}=p\), we know from earlier work that
\[
u_{n+1}=p F_{n}+F_{n-1}
\]
for all integral \(n\). Next, if we wish a representation of an integer \(m>0\), we merely solve
\[
\begin{aligned}
& A=0=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1} \\
& B=m=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}
\end{aligned}
\]
which has a unique solution by Klarner's Theorem. A constructive method of solution is given in [3]. Thus,
\[
\begin{aligned}
m & =u_{k_{1}+1}+u_{k_{2}+1}+\cdots+u_{k_{r}+1} \\
& =p\left(F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1}\right)+\left(F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}\right)
\end{aligned}
\]

We note in passing that the representation we now have is independent of the explicit \(p>0\).

Theorem 2.2: The Fibonacci extended sequence is complete with respect to the integers.

Proof: Since 1, 2, 3, 5, 8, 13, ..., is complete with respect to the positive integers, one notes
\[
F_{-n}=(-1)^{n+1} F_{n},
\]
and, therefore, one can pick out an arbitrarily large negative Fibonacci number. Consider \(M\) an arbitrary negative integer, and there exists a Fibonacci number \(F_{-k}\) such that \(F_{-k}<M<0\). Now, \(M-F_{-k}=N\), which is positive and has a Zeckendorf representation using Fibonacci numbers, and \(M=N+F_{-k}\) is the representation we seek.

Since \(u_{n+2}=u_{n+1}+u_{n}\), if it consists of positive integers as \(n \rightarrow \infty\), then, as \(n \rightarrow-\infty\), the terms become alternating and negatively very large. Thus, the same thing holds for the generalized Fibonacci numbers once we know that they are complete with respect to the positive integers, finishing the proof of Theorem 2.1.

Completeness of the generalized sequence \(\left\{u_{n}\right\}_{-\infty}^{\infty}\) is equivalent to showing that every positive integer is expressible as the sum of a subsequence \(\left\{u_{n}\right\}_{-m}^{\infty}, m>0\), where \(m\) is independent of the integer chosen. We show some special cases:
\begin{tabular}{llll}
Case 1: & \(p=1\) & \(1,1,2,3,5, \ldots\) & Already complete. \\
Case \(2:\) & \(p=2\) & \(1,2,3,5,8, \ldots\) & Already complete. \\
Case 3: & \(p=3\) & \begin{tabular}{l}
\(1,3,4,7,11, \ldots\)
\end{tabular} \\
& &
\end{tabular}

\section*{ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS}

AND GENERALIZED FIBONACCI REPRESENTATIONS
\begin{tabular}{|c|c|c|}
\hline Case & \(p=4\) & 1, 4, 5, 9, 14, 23, ... Complete when \(u_{0}=3\) and \(u_{-1}=-2\) are added to the sequence. \\
\hline Case & \(p=5\) & \(1,5,6,11,17, \ldots \quad\) Complete when \(u_{0}=4\) and \(u_{-1}=-3\) are added to the sequence. \\
\hline Case & \(p=6\) & \begin{tabular}{l}
\(1,6,7,13,20, \ldots\) \\
Complete when \(u_{0}=5, u_{-1}=-4\), and \(u_{-2}=9\) are added.
\end{tabular} \\
\hline Case & \(p=7\) & \(1,7,8,15,23, \ldots \quad\) Complete when \(u_{0}=6, u_{-1}=-5, u_{-2}=11\), and \(u_{-3}=-16\) are added. \\
\hline Case & \(p=8\) & 1, 8, 9, 17, 26, ... Becomes complete when \(u_{0}=7, u_{-1}=-6, u_{-2}=13\), and \(u_{-3}=-19\) are added. \\
\hline
\end{tabular}

Next we consider the generalized Fibonacci sequence.
Theorem 2.3: Let \(u_{n+2}=u_{n+1}+u_{n}\), where \(u_{1}=a, u_{2}=b\), and \((a, b)=1\), \(b \geqslant a \geqslant 1\). Then, every positive integer has a representation from \(\left\{u_{n}\right\}_{-\infty}^{\infty}\) provided that no two consecutive \(u_{j}\) are in the same representation.

Proof: It is known that the generalized Fibonacci numbers are related to the ordinary Fibonacci numbers by
\[
\begin{equation*}
u_{n+1}=b F_{n}+\alpha F_{n-1} . \tag{2.1}
\end{equation*}
\]

Let \(m\) be a positive integer, \(m \geqslant b\). Then we can always write
\[
m=b A+a B
\]
for some integers \(A\) and \(B\), since \((a, b)=1\). If both \(A\) and \(B\) are nonnegative, we are done, since the dual representation of \(A\) and \(B\), by Klarner's Theorem, leads to a representation of \(m\) via (2.1). If \(A\) or \(B\) is negative, notice that, since the ordered pair (\(A, B\)) is a lattice point for a line with slope \(-b / a\) and \(y\)-intercept \(m / a\), if we can add an arbitrarily large integer to \(m\), then we can raise the line so that it crosses the first quadrant and we will have nonnegative values for \(A\) and \(B\). Thus, choose \(u_{-k}<0\) with an absolute value sufficiently large, and we represent
\[
m-u_{-k}=b A^{*}+a B^{*}
\]
for \(A^{*}\) and \(B^{*}\) nonnegative. We then represent \(m-u_{-k}\) via Klarner's Theorem, and add \(u_{-k}\) to that representation to represent \(m\). Similarly, if \(m<b\), since the negatively subscripted terms of \(u_{n}\) become negatively as large as we please, choose \(u_{-k}<0\) so that \(m-u_{-k}>b\), represent \(m-u_{-k}\)
as above, and then add \(u_{-k}\) to the representation.

\section*{3. A PATTERN ARISING FROM KLARNER'S}

\section*{DUAL ZECKENDORF REPRESENTATION}

Recall the Klarner dual Zeckendorf representation given in Section 2, where
\[
\begin{aligned}
& A=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1}=0 \\
& B=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}=n
\end{aligned}
\]
where \(n=1,2,3, \ldots,\left|k_{i}-k_{j}\right| \geqslant 2, i \neq j\), and \(F_{j}\) comes from \(\left\{F_{j}\right\}_{-\infty}^{\infty}\). The constructive method for solving for the subscripts \(k_{j}\) to represent \(A\) and \(B\) described in our earlier work [3] leads to a symbolic display with a generous sprinkling of Lucas numbers. Here we use only two basic formulas,
\[
u_{n+2}=u_{n+1}+u_{n} \quad \text { and } \quad 2 u_{n}=u_{n+1}+u_{n-2}
\]

This allows us to push both right and left. We continue to add \(F_{-1}=1\) at each step, using the rules given to simplify the result. For example, for \(n=1\), we have \(F_{-1}=1\). For \(n=2, F_{-1}+F_{-1}=2 F_{-1}=F_{0}+F_{-3}=2\). For \(n=3, F_{-1}+F_{0}+F_{-3}\) becomes \(F_{1}+F_{-3}=1+2=3\). We display Table 3.1. Strangely enough, the Wythoff pairs sequences enter into this again. The basic column centers under \(F_{-1}\). The display is for expressions for \(B\) only; \(A\) is a translation of one space to the right. At each step, \(B=n\), and \(A=0\).

From Table 3.1, many patterns are discernible. There are always the same number of successive entries in a given column. Under \(F_{-2}\) there are \(L_{1}\); under \(F_{-3}, L_{2}\); under \(F_{-4}, L_{3}\); and under \(F_{-5}, L_{4}\). Under \(F_{-6}\) there are \(L_{5}\) successive entries, starting with \(B=30\), and under \(F_{-7}\) there are \(L_{6}\) successive entries. On the line for \(B=47\), there are only two entries, one corresponding to \(F_{-9}=34\) and one to \(F_{7}=13\), so that \(34+13=47\) as required, while \(F_{-8}=-21\) and \(F_{8}=21\) have a zero sum as required.

The columns to the right of \(F_{-1}\) (under \(F_{0}\), for instance) have \(L_{n} \pm 1\) alternately successive entries, but the same numbers of successive entries always appear in the columns. Once we have all spaces cleared except the

\section*{ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS AND GENERALIZED FIBONACCI REPRESENTATIONS}
extreme edges in the pattern being built, we start again in the middle, as in line 48 or line 19.

TABLE 3.1

4. REPRESENTATIONS AND ADDITIVE PARTITIONS FOR

THE SEQUENCE \(1,4,5,9,14,23, \ldots\)
We make the following array:
\[
\begin{aligned}
A_{n} & =\text { first positive integer not yet used } \\
B_{1}(n) & =B_{n}-2 \\
B_{2}(n) & =B_{n}-1 \\
B_{n} & =A_{n}+d_{n},
\end{aligned}
\]

1984]
where \(d_{n} \neq A_{j}\) and goes through the complement of \(\left\{A_{n}\right\}\) in order, except we do not use \(B_{1}(n)\) opposite the second of a consecutive pair of \(A_{n}\); i.e., we do not use \(B_{1}(n)\) if \(A_{n}=A_{n-1}+1\). The underlined numbers in the following table cannot be used for \(d_{n}\).
\begin{tabular}{rrrrrr}
\(n\) & \(A_{n}\) & \(B_{1}(n)\) & \(B_{2}(n)\) & \(B_{n}\) & \(d_{n}\) \\
\hline 0 & 0 & & & & \\
1 & \(\frac{1}{5}\) & \(\frac{2}{7}\) & 3 & 4 & 3 \\
2 & \(\frac{5}{6}\) & \(\frac{11}{16}\) & 12 & 9 & 4 \\
3 & \(\underline{10}\) & 17 & 13 & 7 \\
4 & \(\underline{14}\) & 21 & 22 & 23 & 8 \\
5 & \(\underline{15}\) & \(\underline{25}\) & 26 & 27 & 12 \\
6 & \(\underline{19}\) & 31 & 32 & 13 \\
7 & \(\underline{20}\) & \(\underline{34}\) & 35 & 36 & 16 \\
8 & \(\underline{24}\) & \(\underline{39}\) & 44 & 40 & 41 \\
10 & \(\cdots\) & \(\cdots\) & 46 & 17 \\
\(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\)
\end{tabular}

We now have the following constant differences, where \(\left(a_{n}, b_{n}\right)\) is a Wythoff pair:
\[
\begin{align*}
& B_{n+1}-B_{n}= \begin{cases}5, & n=a_{i} \\
4, & n=b_{j}\end{cases} \tag{4.1}\\
& A_{n+1}-A_{n}= \begin{cases}4, & n=a_{i} \\
1, & n=b_{j}\end{cases} \tag{4.2}
\end{align*}
\]

A1ternately,
\[
\begin{align*}
& A_{n}=3 a_{n}-2 n=\left(2 n-a_{n}\right) \cdot 1+\left(a_{n}-n\right) \cdot 4 \tag{4.3}\\
& B_{n}=a_{n}+3 n=\left(2 n-a_{n}\right) \cdot 4+\left(a_{n}-n\right) \cdot 5 \tag{4.4}
\end{align*}
\]

Apparently, \(d_{n} \neq B_{j}+1\) and \(d_{n} \neq B_{j}+2\).
This extends for the sequence \(1, p, p+1, \ldots, u_{n+2}=u_{n+1}+u_{n}\).

\section*{5. REPRESENTATIONS AND ADDITIVE PARTITIONS USING THE \\ GENERALIZED FIBONACCI NUMBERS}

We consider the general case for \((a, b)=1\), and
\[
u_{1}=a, u_{2}=b, u_{n+2}=u_{n+1}+u_{n} .
\]

First we have a unique additive partition and the function
\[
\begin{gather*}
\text { ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS } \\
\text { AND GENERALIZED FIBONACCI REPRESENTATIONS } \\
E_{n}(m)=m u_{n-1}-u_{n}\left[m u_{n-1} / u_{n}\right], m=1,2, \ldots, u_{n}-1 \tag{5.1}
\end{gather*}
\]
generates \(1,2,3, \ldots, u_{n}-1\), but, of course, not in natural order. One set of the additive partition includes \(1 \leqslant m \leqslant u_{n} / 2\), while the other has \(u_{n} / 2<m \leqslant u_{n}-1\). Suppose \(0<\alpha^{*}<b^{*}\); then the values of \(E_{n}(m)\) are split into \(b^{*}\) disjoint sets whose first elements are \(1,2,3, \ldots, a^{*}, \ldots, b^{*}\). The elements of the sets to the left of \(a^{*}\) are, correspondingly, 1 less, 2 less, 3 less, as we go to the left, while the sets between \(a^{*}\) and \(b^{*}\) have their values 1 less, 2 less, 3 less, ..., than \(b^{*}\). Each element satisfies
\[
\begin{align*}
& \alpha_{n+1}^{*}-\alpha_{n}^{\star}=b, n \in\left\{a_{k}\right\}, a_{k}=[k \alpha], \alpha=\frac{1+\sqrt{5}}{2}, \tag{5.2}\\
& \alpha_{n+1}^{*}-\alpha_{n}^{\star}=\alpha, n \in\left\{b_{k}\right\}, b_{k}=\left[k \alpha^{2}\right] .
\end{align*}
\]

The \(a_{n}^{*}\) are the representations using
\[
a+\alpha_{2} b+\alpha_{3} u_{3}+\ldots, \alpha_{i}=0 \text { or } 1
\]
while we can show
\[
\begin{align*}
& a_{n}^{*}=\left(2 n-a_{n}\right) a+\left(a_{n}-n\right) b \tag{5.3}\\
& b_{n}^{*}=\left(2 n-a_{n}\right) b+\left(a_{n}-n\right)(a+b) \tag{5.4}
\end{align*}
\]
because of the formula
\[
\begin{equation*}
u_{n+1}=b F_{n}+a F_{n-1} \tag{5.5}
\end{equation*}
\]

Let \(\alpha^{*}=\left\{\alpha+\alpha_{2} u_{2}+\alpha_{3} u_{3}+\cdots\right\}\) in natural order. Then
\[
\begin{aligned}
\alpha_{n}^{*} & =b F_{0}+\alpha F_{-1}+\alpha_{2}\left(b F_{1}+a F_{0}\right)+\cdots \\
& =b\left(F_{0}+\alpha_{2} F_{1}+\alpha_{3} F_{2}+\cdots\right)+\alpha\left(F_{-1}+\alpha_{2} F_{0}+\cdots\right) \\
& =a\left(2 n-\alpha_{n}\right)+b\left(a_{n}-n\right)
\end{aligned}
\]
since
\[
a_{n} \rightarrow n \rightarrow a_{n}-n \rightarrow 2 n-a_{n}
\]

Thus, once we know that \(a_{n+1}-a_{n}=2\) for \(n=a_{j}\) and \(a_{n+1}-a_{n}=1\) for \(n \neq a_{j}\), and \(u_{n+1}=b F_{n}+a F_{n-1}\), we have (5.3) and (5.4). Further, these \(a_{n}^{*}\) and \(b_{n}^{*}\) are the generalizations of the Wythoff pair numbers \(\alpha_{n}=[n \alpha]\) and \(b_{n}=\left[n \alpha^{2}\right]\) themselves \(\left(\alpha=\frac{1+\sqrt{5}}{2}\right)\).

\section*{ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS AND GENERALIZED FIBONACCI REPRESENTATIONS}
6. REPRESENTATIONS AND ADDITIVE PARTITIONS ARISING FROM

TWO SUCCESSIVE FIBONACCI NUMBERS

It is well known that if we start with 1 and 2 , we get the Wythoff pairs and have a unique additive partition of the positive integers. Next, to see something else, take 2 and 3 . Since \((2,3)=1\), we still have the same additive partition of the positive integers, and the function \(E_{n}(m)\) of (5.1) and (1.1) still yields the residues mod \(F_{n}\), but our array changes in an interesting way.

TABLE 6.1
\(2,3,5,8,13,21, \ldots\)
\begin{tabular}{|c|c|c|c|c|}
\hline & & & \(A_{n}\) & \(B_{n}\) \\
\hline 1 & 2 & 3 & 1 & 2 \\
\hline 4 & 5 & 8 & 3 & 4 \\
\hline 6 & 7 & 11 & 6 & 5 \\
\hline 9 & 10 & 16 & 8 & 7 \\
\hline 12 & 13 & 21 & 9 & 10 \\
\hline 14 & 15 & & 11 & 12 \\
\hline & ... & . . & 14 & 13 \\
\hline & & & 16 & 15 \\
\hline \({ }^{a_{a_{n}}}\) & \(b_{n}\) & \(a_{b_{n}}\) & 17 & 18 \\
\hline \multicolumn{2}{|c|}{\(W=2\)} & \(W=3\) & 19 & 20 \\
\hline
\end{tabular}

Note that, if we give \(a\) weight one and \(\bar{b}\) weight two, we have the weights abbreviated by \(W\) above. The successive values of \(E_{n}(m)\) are the same as before, but we now have a different split to look at. Note that \(A\) and \(B\) are formed so that no two elements of either set have 2, 3, 5, 8, 13,..., as their sum. Now let us look at \(E_{n}(m)\) for \(13=F_{n-1}\) and \(21=F_{n}\); i.e.,
\[
E_{n}(m)=13 m-21[13 m / 21]
\]

The twenty values in the cycle are:
\[
13,5,18,10,2,15,7,20,12,4,17,9,1,14,6,19,11,3,16,8 .
\]

The first 10 are elements of \(B_{n}\); the other 10 are \(A_{n}\). The first 8 have the form \(b_{n}\); the next 8 have the form \(\alpha_{\alpha_{n}}\); the last 4 have the form \(\alpha_{b_{n}}\).

\section*{AdDITIVE PARTITIONS OF THE POSITIVE INTEGERS AND GENERALIZED FIBONACCI REPRESENTSTIONS}

Now look at the array induced by 3 and 5 as a starting pair.
TABLE 6.2
\(3,5,8,13,21,34, \ldots\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \(A_{n}\) & \(B_{n}\) \\
\hline 1 & 2 & 3 & 4 & 5 & 1 & 2 \\
\hline 6 & 7 & 8 & 12 & 13 & 3 & 4 \\
\hline 9 & 10 & 11 & 17 & 18 & 6 & 5 \\
\hline 14 & 15 & 16 & 25 & 26 & 8 & 7 \\
\hline 19 & 20 & 21 & 33 & 34 & 9 & 10 \\
\hline 22 & 23 & 24 & 38 & 39 & 11 & 12 \\
\hline \multirow[t]{3}{*}{27
\(\ldots\)} & \multirow[t]{2}{*}{28} & \multirow[t]{3}{*}{29} & 46 & 47 & 14 & 13 \\
\hline & & & 51 & 52 & 16 & 15 \\
\hline & & & . . . & -•• & 17 & 18 \\
\hline \multirow[t]{2}{*}{\(\underbrace{a_{a_{a_{n}}}}\)} & \(b_{a_{n}}\) & \(\alpha_{b_{n}}\) & \(a\) & \(b_{b_{n}}\) & 19 & 20 \\
\hline & \multicolumn{2}{|l|}{\(W=3\)} & & & & \\
\hline
\end{tabular}

The \(A_{n}\) and \(B_{n}\) are the same as before.
Return to the values of \(E_{n}(m)\) for 13 and 21 given above. Notice that the first 3 values-13, 5, 18-come from \(b_{b_{n}}\); the next 5 from \(b_{\alpha_{n}}\); the next 3 from \(\alpha_{\alpha_{b_{n}}}\); then five from \(\alpha_{\alpha_{a_{n}}} ;\) and, lastly, 4 from \(a_{b_{n}}\). We begin to see familiar patterns emerging [4], [5].

We write the array induced by 5 and 8 in Table 6.3.
TABLE 6.3
\[
5,8,13,21,34,55, \ldots
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \(A_{n}\) & \(B_{n}\) \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 2 \\
\hline 9 & 10 & 11 & 12 & 13 & 19 & 20 & 21 & 3 & 4 \\
\hline 14 & 15 & 16 & 17 & 18 & 27 & 28 & 29 & 6 & 5 \\
\hline 22 & 23 & 24 & 25 & 26 & 40 & 41 & 42 & 8 & 7 \\
\hline 30 & 31 & 32 & 33 & 34 & 53 & 54 & 55 & 9 & 10 \\
\hline 35 & 36 & 37 & 38 & 39 & 61 & 62 & 63 & 11 & 12 \\
\hline 43 & 44 & 45 & 46 & 47 & 74 & 75 & 76 & 14 & 13 \\
\hline \(\cdots\) & & . & \(\cdots\) & \(\cdots\) & & \(\ldots\) & \(\cdots\) & 16 & 15 \\
\hline \(\alpha_{\alpha_{a_{a}}}\) & \(b_{\alpha_{a_{n}}}\) & \(\alpha_{b_{a_{n}}}\) & \(a_{a_{b_{n}}}\) & \(b_{b_{n}}\) & \(a_{a_{a_{b_{n}}}}\) & ba & \(a_{b_{b_{n}}}\) & 17 & 18 \\
\hline \multicolumn{4}{|r|}{Five of weight 4} & \multicolumn{4}{|r|}{Three of weight 5} & 19 & 20 \\
\hline
\end{tabular}

Since \(a_{n}\) and \(b_{n}\) are elements in complementary sets, the array on the left covers the positive integers. Note that the additive partition sequence \(A_{n}\) and \(B_{n}\) is the same for \((1,2),(2,3),(3,5),(5,8)\), and for all consecutive Fibonacci pairs.

Now, the weights mentioned under the arrays from \((2,3),(3,5)\), and (8,13) are precisely the unshortened sequence of 1 's and 2 's in the compositions of \(W\) (the weight) as laid out by our scheme in [4]. As each must end in a \(1=a_{1}\) or a \(2=b_{1}\), to get the proper representation, we simply replace 1 in each case by \(n\) and let \(n=1,2,3, \ldots\). This is a wonderful application of Wythoff pairs, Fibonacci representations, additive partitions of the positive integers, and the function \(E_{n}(m)\).

Before we prove all of this, we need some results for Wythoff's pairs from [1] and [5]. For Wythoff's pairs \(\left(a_{n}, b_{n}\right)\),
\[
\begin{align*}
a_{b_{n}+1}-a_{b_{n}}= & 1 \quad \text { and } \quad a_{\alpha_{n}+1}-a_{\alpha_{n}}=2 \tag{6.1}\\
& a_{a_{n}}+1=b_{n} \tag{6.2}
\end{align*}
\]

Return to the weights given in the array induced by 3 and 5 in Table 6.2. From (6.2), replacing \(n\) by \(a_{n}\), we get immediately that
\[
\begin{equation*}
a_{a_{a_{n}}}+1=b_{a_{n}} \tag{6.3}
\end{equation*}
\]

Now,
\[
a_{\alpha_{a_{n}}}+1=b_{a_{n}} \quad \text { and } \quad a_{a_{\alpha_{n}}+1}=a_{\alpha_{a_{n}}}+2
\]
from (6.1) rewritten as
\[
a_{a_{n}+1}=a_{a_{n}}+2
\]

Thus,
\[
b_{\alpha_{n}}+1=a_{a_{a_{n}}+1}=a_{b_{n}}
\]
as required.
We obtain
\[
\begin{equation*}
a_{a_{b_{n}}}+1=b_{b_{n}} \tag{6.4}
\end{equation*}
\]
by replacing \(n\) by \(b_{n}\) in (6.2). These are all the weights appearing in Table 6.2.

Now, we move to Table 6.3, the array induced by 5 and 8, and examine the weights. From (6.2), by replacing \(n\) by \(\alpha_{a_{n}}\), we easily obtain
\[
a_{a_{a_{a_{n}}}}+1=b_{a_{a_{n}}} .
\]

\section*{ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS \\ AND GENERALIZED FIBONACCI REPRESENTATIONS}

Then,
\[
a_{\alpha_{\alpha_{\alpha_{n}}}}+2=b_{\alpha_{\alpha_{n}}}+1=a_{\alpha_{a_{\alpha_{n}}}}+1=\alpha_{b_{a_{n}}} .
\]

Next, again from (6.2) with \(n\) replaced by \(b_{n}\) and then \(n\) replaced by \(a_{b_{n}}\), we have
\[
a_{a_{b_{n}}}+1=b_{b_{n}} \quad \text { and } \quad a_{a_{a_{b_{n}}}}+1=b_{a_{b_{n}}}
\]

Again using (6.2), we can also write
\[
b_{a_{b_{n}}}+1=a_{a_{a_{b_{n}}}+1}=a_{b_{b_{n}}} .
\]

This undoubtedly continues.
To get our next line of weighted 1 's, we simply add \(a_{n}\) to end each 1 of weight 4, and take those of weight 5 together with these. All of the following are of weight 5:
\[
\alpha_{a_{a_{a_{a_{n}}}}} \quad b_{a_{a_{a_{n}}}} \quad a_{b_{a_{a_{n}}}} \quad a_{a_{b_{a_{n}}}} \quad b_{b_{a_{n}}} \quad a_{a_{a_{b_{n}}}} \quad b_{a_{b_{n}}} \quad a_{b_{b_{n}}}
\]

The five on the left end in \(\alpha_{n}\), and came from adding an \(\alpha_{n}\) to each 1 of weight 4; the three on the left ending in \(b_{n}\) are of weight 5 already.

To get the next five of weight 6 to the right, we add \(\alpha_{b_{n}}\) to the end of the weight \(3 a_{a_{a_{n}}}, b_{a_{n}}\), and \(\alpha_{b_{n}}\), then add \(b_{n}\) only to the weight \(4 a_{a_{b_{n}}}\) and \(b_{b_{n}}\) of Table 6.2, to form
\[
a_{a_{a_{a_{b_{n}}}}} \quad b_{a_{a_{b_{n}}}} \quad a_{b_{a_{b_{n}}}} \text { and } \quad a_{a_{b_{b_{n}}}} \quad b_{b_{b_{n}}}
\]

Now, we would like to have
\[
\begin{equation*}
b_{b_{a_{n}}}+1=a_{a_{a_{b_{n}}}} \tag{6.5}
\end{equation*}
\]

From \(a_{a_{b_{a_{n}}}}+1=b_{b_{a_{n}}}\), we have
\[
a_{a_{b_{a_{n}}}}+2=b_{b_{a_{n}}}+1=a_{a_{b_{a_{n}}}+1}
\]

Now, \(a_{b_{a_{n}}}+1=a_{b_{a_{n}}}\), so that
\[
a_{b_{a_{n}}}+1=a_{b_{a_{n}}+1}=a_{a_{a_{a_{n}}+2}}=a_{a_{a_{a_{n}}+1}}=a_{a_{b_{n}}} .
\]

Thus, \(a_{a_{b_{a_{n}}}+1}=a_{a_{a_{b_{n}}}}\), establishing (6.5).
Finally, we write a complete proof based on (6.1) and (6.2). Notice that we have to show that the differences between successive columns are 1984]

\section*{ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS AND GENERALIZED FIBONACCI REPRESENTATIONS}
always 1 , except for the transition that comes between the columns headed by \(F_{n-1}\) and \(F_{n-1}+1\) in the array. Also, we need a rule for formuation.

The rule of formation of one array from the preceding array is as follows: To get the array with \(F_{n+1}\) columns, build up the left \(F_{n-1}\) and the right \(F_{n-2}\) columns of the array for \(F_{n}\) columns by extending the subscripts. Add \(a_{n}\) to the bottom of each subscript in the left part, copy down the right part next as is, and then copy down the old left part with \(b_{n}\) added to the bottom to get the rew right part.

Now, the entries before the dashed line in Lines 1, 2, 3, and 4 above are alternately odd- and even-subscripted Fibonacci numbers, while the entries on the far right are the next higher Fibonacci numbers if we replace \(n\) by 1. Thus, we have the sequence of representations in natural order.

We show that the columns always differ by one within the left part and within the right part. We count each \(a\) subscript \(l\) and each \(b\) subscript 2. Then the left part of Line 1 has weight 1 and the right part weight 2 , and the left part of Line 2 has weight 2 and the right part has weight 3 . The columns in the left part of Line 2 differ by 1 according to (6.2),
\[
a_{a_{n}}+1=b_{n}
\]
which generalizes to
\[
\begin{equation*}
a_{\alpha_{A_{n}}}+1=b_{A_{n}} \tag{6.6}
\end{equation*}
\]
for any \(A_{n}\). Next, for Line 3,
\[
\begin{array}{rlll}
a_{a_{n}} & b_{a_{n}} & a_{b_{n}} \mid & a_{a_{b_{n}}} \\
\text { Weight } 3 & b_{b_{n}} \\
\text { Weight } 4
\end{array}
\]
we have, from (6.2),
\[
b_{\alpha_{n}}+1=\alpha_{a_{a_{n}}}+2=\alpha_{\alpha_{a_{n}}+1}=\alpha_{b_{n}},
\]
and from (6.1) and (6.6),
\[
\begin{equation*}
b_{a_{A_{n}}}+1=a_{a_{a_{A_{n}}}}+2=a_{a_{A_{A_{n}}}}=a_{b_{A_{n}}} \tag{6.7}
\end{equation*}
\]
so that
\[
a_{a_{b_{n}}}+1=b_{b_{n}}
\]
follows for \(A_{n}=b_{n}\).
Now, for
\[
\begin{array}{ccc:c}
a_{a_{a_{n}}} & b_{a_{a_{n}}} a_{b_{a_{n}}}^{*} & a_{a_{b_{n}}} & b_{b_{n}} \\
\text { Weight } 4 & a_{a_{a_{b_{n}}}} & b_{a_{b_{n}}} & a_{b_{b_{n}}} \\
& \text { Weight } 5
\end{array}
\]
note that all cases follow from earlier cases, except transition case 非, marked with an asterisk above:
\[
\begin{equation*}
a_{b_{a_{n}}}+1=a_{a_{b_{n}}} \tag{6.8}
\end{equation*}
\]

But, \(\alpha_{b_{a_{n}}}+1=a_{b_{a_{n}+1}}=a_{a_{a_{n}}+2}=a_{a_{a_{n}+1}}=a_{a_{b_{n}}}\).

We now display all of one more case:
\[
a_{a_{a_{a_{n}}}} b_{a_{a_{a_{n}}}} a_{b_{a_{a_{n}}}} a_{a_{b_{a_{n}}}} b b_{b_{a_{n}}}^{\stackrel{\rightharpoonup}{*}} a_{a_{a_{b_{n}}}} b_{a_{b_{n}}} a_{b_{b_{n}}} \mid a_{a_{a_{a_{b_{n}}}}} b_{a_{a_{b_{n}}}} a_{b_{a_{b_{n}}}} a_{a_{b_{b_{n}}}} b_{b_{b_{n}}}
\]

Weight 5
Weight 6
Note that all these columns differ by one within the left and right parts from earlier results, except transition case 非2, marked with an asterisk above,
\[
\begin{equation*}
b_{b_{a_{n}}}+1=a_{a_{a_{b_{n}}}} \tag{6.9}
\end{equation*}
\]
which is proved as follows:

1984]

\section*{ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS}

AND GENERALIZED FIBONACCI REPRESENTATIONS
\[
b_{b_{a_{n}}}+1=a_{a_{b_{a_{n}}}}+1+1=a_{a_{b_{a_{n}}}}+2=a_{a_{b_{a_{n}}}+1}=a_{a_{a_{b_{n}}}}
\]
from (6.2) and (6.8), which was transition case 非1 above.
When we write the next line, our transition case will again be like \#1, as
\[
\begin{equation*}
a_{b_{b_{a_{n}}}}+1=a_{a_{a_{a_{b_{n}}}}}, \tag{6.10}
\end{equation*}
\]
proved from (6.1) and (6.9), which was transition case 非2 above, as
\[
a_{b_{b_{a_{n}}}}+1=a_{b_{b_{a_{n}}}}=a_{a_{a_{b_{n}}}}
\]

Next, the transition will again by 1ike \#2 above,
\[
\begin{equation*}
b_{b_{b_{a_{n}}}}+1=a_{a_{a_{a_{a_{b_{n}}}}}} \tag{6.11}
\end{equation*}
\]

\[
b_{b_{b_{a_{n}}}}+1=a_{a_{b_{b_{a_{n}}}}}+2=a_{a_{b_{b_{a_{n}}}}}+1=a_{a_{a_{a_{a_{b_{n}}}}}}
\]

The proof is now complete, by the principle of mathematical induction. That is, if, for the earlier cases, each term of the sequence plus 1 is the next one to the right, then, from the formation rules and general result (6.1), we get that it holds for the next case, but we have to prove the transition cases, since we get the results for each left and right part separately. To get a new left section, we add \(\alpha_{n}\) to the bottom of the old left section subscripts and use general result (6.7) and just copy down the right section as is, and these two parts are, separately, okay. The transition from left to right in the new left section is now proved in four cases by mathematical induction. The new right part, which is the former left part with \(b_{n}\) added on the end, yields to general result (6.1). This completes the discussion.

Suppose the line array, at some level, produces sequences whose elements cover the positive integers without overlap. Since \(a_{n}\) is added to the left portion to form the left part of the new left part and the \(b_{n}\) is added to the left portion to form the new right part, these two pieces

\section*{AdDITIVE PARTITIONS OF THE POSITIVE INTEGERS AND GENERALIZED FIBONACCI REPRESENTATIONS}
cover all the integers together that we covered by the left part before, and the old right side is left intact, ao that the new line again covers the positive integers without overlap.

\section*{REFERENCES}
1. V.E. Hoggatt, Jr., Marjorie Bicknell-Johnson, \& Richard Sarsfield. "A Generalization of Wythoff's Game." The Fibonacci Quarterly 17, No. 3 (Oct. 1979):198-211.
2. David A. Klarner. "Partitions of \(N\) into Distinct Fibonacci Numbers." The Fibonacei Quarterly 6, No. 4 (Oct. 1968):235-43.
3. V.E. Hoggatt, Jr., \& Marjorie Bicknell. "Generalized Fibonacci Polynomials and Zeckendorf's Theorem." The Fibonacci Quarterly 11, No. 4 (Nov. 1973):399-413.
4. V. E. Hoggatt, Jr., \& Marjorie Bicknell-Johnson. "Representation of Integers in Terms of the Greatest Integer Function and the Golden Section Ratio." The Fibonacci Quarterly 17, No. 4 (Dec. 1979):306-17.
5. V.E. Hoggatt, Jr., \& Marjorie Bicknell-Johnson. "Sequence Transforms Related to Representations Using Generalized Fibonacci Numbers." The Fibonacci Quarterly 20, No. 4 (Nov. 1982):289-98.
\(\bullet \diamond \Delta\rangle\)```

