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1. INTRODUCTION: THE COMBINATORICS FUNCTION TECHNIQUE 

In a series of papers published over the past few years, [1]? [2]s a 

method called the combinatorics function techniques or CFT5 was perfected 

to obtain the solution of any linear partial difference equation subject 

to a set of initial values. Fibonacci-like recursion relations are a spe-

cial case of difference equations that could be solved by the CFT method,, 

Although many applications of the CFT have been published elsewhere, [3], 

[4], the study here leads to original results and provides a natural gen-

eralization of the problem investigated by Hock and McQuistan in "Occupa-

tional Degeneracy for X-Bell Particles on a Saturated XxN Lattice Space" 

[5]. 

For the reader who is not familiar with the CFT method, we summarize 

briefly the results of [2]. Consider a function B depending on n variables 

{m1^m15 ms$ ...5 mn) . The evaluation points Ms in the associated n-dimen-

sional space whose coordinates are (rnl9 m2S »*»s mn) and vector M5 whose 

components are the same as the coordinates of point M9 will be used inter-

changeably for convenience. The multivariable function B is said to satis-

fy a partial difference equation when its value at point M9 5(M), is 

linearly related to its values at shifted arguments such as M - Afe3 i.e., 

B(M) = £ fA <M)£(M-Ak) + J(M)- (LI) 
k = i k 

The coefficients / (M) and the inhomogeneous term J(M) are assumed to be 

known and may not necessarily be constant. The problem to be investigated 

here is a difference equation with no inhomogeneous terms i.e., 

KM) = Os (1.2) 
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one-dimensional (n = 1), and with N=2, thus corresponding to a three-term 

recursion relation. 

The set formed by the N shifts or N displacement vectors, A^ , is de-

noted c9̂; 

d = {A19 A2, ..., A*}. (1.3) 

Generally, equation (1.1) holds for points M in the n-dimensional space 

belonging to a certain region, ̂ , that may not necessarily be finite. The 

values of a function B at a boundary, called^, of region^?, are also gen-

erally known as 

5(JA) = A£; £ = 1, 2, ... and JZEJ. (1.4) 

The evaluation points, J£ , exhibited in equation (1.4) are referred to as 

boundary points for obvious reasons. Similarly, the region fl containing 

the boundary points Jl is interchangeably referred to as the set of bound-

ary points or, simply, boundary set, while region 5? is the set of points 

M for which equation (1.1) must hold. 

Equation (1.1) and its boundary value conditions, equation (1.4), were 

first discussed by the author and collaborators in earlier papers [1] for 

the special case of a single-variable function B and therefore defined on 

a one-dimensional space (n - 1). Some applications were also discussed in 

connection with the Schrodinger equation with a central linear potential 

[3]. Equation (1.1) is not necessarily consistent with the boundary value 

condition (1.2). To obtain the consistency condition, it was essential to 

introduce in [2] a set, ̂ , containing all points M in the n-dimensional 

space having the following property: 

Every possible path reaching any point belonging to set *J6 by suc-
cessive discrete displacement vectors A^ E s& should contain at 
least one point belonging to the boundary set #. 

When such a relationship exists between two sets <J£ and ^ , then J, is 

called a full boundary of ^ with respect to s&. Also essential to the 

consistency problem was the notion of restricted discrete paths connect-

ing a boundary point, say J£ , to a point M belonging to set ^ . Such a 

restricted path, if it exists, does not contain any boundary point other 

than J^. In [2], we were able to show that there exists one and only one 
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set, $ s called the minimal full boundary of <M with respect to sd> such 

that each and every element of £ can be connected to at least one element 

of <Jt by at least one restricted path. It then follows that: 
(i) equation (1.1) is consistent with equation (1.4) provided 0t <^J6 

and, 

(ii) if this is the case, its solution is unique and depends only on 
those £!s corresponding to boundary points J£ C $~ -

The CFT method gives an explicit and systematic way of constructing 

the solution of equation (1.1) in terms of the so-called combinatorics 

functions of the second kind. An early version of the combinatorics func-

tions of the second kind can be found in [1], and their applications to 

some physical problems are discussed in [3] and [4]. An extended and more 

complete version of the e functions was obtained in [2]. We now give the 
definition of the combinatorics functions of the second kind leading to 

the construction of the solution of equation (1.1). 

For every boundary point J£ G iQ and evaluation point M E «^, one con-

siders all possible paths connecting Jl to M by discrete displacement 

vectors 6 • E sd. A given path is identified by two labels 0) and q. Label 

0) refers to the total number of displacements on a discrete path. Label 

q is used to distinguish among various paths, having the same number, oo, 
of displacement vectors. Corresponding to each (udq)-path with displacement 
vectors (6X, B2s ...* ̂ o>)* ordered sequentially from the boundary point J^ 
to the evaluation point M9 intermediate points, S^9 on the path are gen-

erated and represented by vectors S^, according to: 

i 
®i = J^ *+- 2 % ; i = 1» • • •» ^; So3 = M. (1.5) 

J = I 

With each (o)^)-path one associates the functional 

Fj(J£;M) = ft tf(S*)JV (S*). (1.6) 

Here, the f6
 fs are the coefficients appearing in the difference equation 

(1.1), and W(Si) is a weight function that may take the values 0 or 1, ac-
cording to: 

W(Si) = 0, if S,e/ 0 ; 

W(Si) = 1, otherwise. 
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That is, F^ vanishes whenever a path connecting Jz to M contains an inter-

mediate point Si belonging to the boudary set $ . In other words, re-

stricted paths are automatically selected and Fq would otherwise be iden-

tically zero. The combinatorics function of the second kind associated 

with the boundary point Jg and the evaluation point M are then defined as 

c(JA; M) = E E ^ ? ( J * ; M ) . ( i .8) 
6o q 

Finally, the solution of a homogeneous (J = 0) difference equation (1.1), 

subject to the initial conditions (1.4), when it exists, is given by 

BQK) = E A£C(J£;M). (1-9) 

The problem we intend to discuss is the three-term Fibonacci-like re-

cursion relation, 

Bm = aBm_1 + bBm_x, (1.10) 

where a and b are constant parameters and A is a positive integer greater 
than unity. The case A = 2 was discussed in detail elsewhere using the 

CFT (see [4]). The case a = &= 1 with an unspecified value of A describes 

exactly the occupational degeneracy for A-bell particles on a saturated 

A x m lattice space when equation (1.10) is subject to a special set of 

initial conditions, as studied by Hock and McQuistan [5]. It is the pur-

pose of this article to develop a unified approach to the problems of [4] 

and [5] that will be based on the generating function of Hock and McQuis-

tan combined with our CFT method. 

Section 2 develops the general solution of equation (1.10) subject to 

the unspecified initial value conditions 

B_x+j = Ad for j = 1, ..., A - 1 (1.11a) 

B0 = A0 (1.11b) 

The choice AQ for BQ instead of Ax, as might be suggested by (1.11a), is 

motivated by nicer looking equations appearing later in the paper. 

Section 3 presents a class of generating functions that may be asso-

ciated with equation (1.10). The method used there is somewhat more gen-

eral than the one presented in [5]. 
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Section 4 makes the comparison between the CFT and generating function 

methods, thus leading to a very interesting sum rule that is a generaliza-

tion of the sum rules obtained in [4] and [5]. 

The conclusion of the paper is presented in Section 5. 

2. THE CFT SOLUTION 

The Fibonacci-like recursion relation, 

Bm = aB n + bBm,9 X > 2, (2.1) 

will be solved for a general set of initial values: 

£_A + J- = Â -, for j = 1, ..., A - 1, 
(2.2) 

h = V 
This one-dimensional problem has boundary points J, J , . . . , J. , . . . , Jx_1 

of abscissae 0, -A + 1, . .., _x + j, ..., - 1, respectively. The one-

dimensional region, ,JK9 consistent with the boundary region $ consists of 
points M of positive integer abscissae. Paths connecting an evaluation 

point M of abscissa m (m > 0) to a boundary point Jj of abscissa -X + j, 
if j ^ 0, or 0, if j = 0, are made of displacements or steps of lengths 1 

and A. No intermediate point on these paths should belong to the boundary 

region /. Boundary and evaluation points are represented on Figure 1. 

1 2 3 4 5 m 
_x x x x * • 

- A + 1 

^ i 

- A + 2 

J2 

-X + j - 1 

J0 J A - 1 

FIGURE 1 

0 

J, 

The points represented by circles "o" are boundary points and those 
represented by crosses "x" are evaluation points 

We now proceed along the lines set by the CFT method for the construc-

tion of the combinatorics function C(Jj ; M). In any path, a displacement 

by +1 produces a factor / E a and a displacement by A produces a factor 
fa E b' Thus, for any given path connecting J. to Af, we count the number 

of displacements +1 and the number of displacements A. This path is then 

represented, according to the CFT method, by the product 
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F^ = ^(number of displacements +1) v -r(number of displacements X) 
rto a * D (2.3) 

It is convenient to discuss separately the construction of C(JQ; M) and 
Cty ; M) 

C(Jn; M) 

C(Jj; M) for j = 1, ..., X - 1. 

Figure 2 indicates that none of the distinct paths made of displace-

ments +1 and X leaving boundary point JQ and reaching evaluation point M 
contains a boundary point other than JQ. In this case, none of the weight 

functions W(S ) is zero. Let T- refer to integer divisions and m to the 

remainder, so that 

-[!] + 77?. (2.4) 

m 
- - - o o o o :—' x • 

JX-2 JX-1 ^ 0 M 

FIGURE 2 

None of the distinct paths made either of displacements +1 or X 
leaving JQ and reaching the evaluation point M 

contains a boundary point other than JQ 

Clearly, the maximum number of displacements of length X from the origin 
JQ to M is r corresponding to a minimum number of displacements of length 

+1 equal to ~m. If in a path connecting J0 to M there are k displacements 
of length X (o < k ^ y ], then the number of displacements of length +1 

must be (m - Xk) since the length of segment JQM is precisely equal to 777. 

The total number of displacements in such a path is 03 = k + (m - Xk) . If 
q is the label of this particular path having 00 displacements, then 

Fj(e70; M) = am~xk x bk . (2.5) 

For a given total number of displacements a), distinct paths may be gener-

ated by a reshuffling of the order of displacements of different lengths. 

Clearly, the distinct number of arrangements of these displacements for a 

given value of w, i.e., for a given value of k [O < H T I is the bino-

mial 
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Thus, the combinatorics function C(J0; M) is given by 

C(J0; M) = £ £ F*(J0; M) 
co q = 1 

£ r ̂ " ^ = E a-^bHm ~ k[X ~ V) (2.7) 
fc = 0 (7 = 1 fc = 0 \ K / 

C(Jji M) for j = 1 to A - 1 

Figure 3 shows that5 in order to avoid intermeriate boundary points on 

any path that may connect Jj to point M9 the first displacement, when leav-

ing Jj , must be of length A, thus reaching point Mj of abscissa j . Clearly, 

if the abscissa, m» of the evaluation point M is less than j, then every 

possible path contains at least one boundary point as an intermediate 

point, and the associated combinatorics function vanishes, i.e., 

C(J, ; M) E 0, for 0 < m < j. (2.8) 
d 

On the other hand, if m ̂  j, then all possible paths that contain no bound-

ary points other than Jj have the same first displacement A. 

X 

-X+j 
o — 

-1 0 

^ A - 1 ^ 0 

FIGURE 3 

J 

Mj 

m 

M Jo 

Here j - 1 to X - 1 . In order to avoid intermediate boundary points 
when leaving point Jj to reach the evaluation pointM by displace-

ments of lengths -M and A, the first displacement must be of 
length A, thus reaching point Mj, of abscissa j 

This first displacement contributes to the functional F ̂  by producing an 

overall factor 2?. It is then straightforward to show that 

F«(Jj ; M) = bF^^Mji M), (2.9) 

where F(i}_1(Mjl M) refers to the functional associated with the qth. path 

cojnecting Mj to M and having (A - 1) dispalcements of length 1 and A* 
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Since the length of segment MjM is m - j, one may write an equation simi-
lar to (2.4): 

m - j = ̂ [^y-52-] + ^ r 7 > (2.10) 

where the square bracket [ ], and the top bar, , still have the same 

meaning as in (2.4). The analysis for the paths connecting JQ to M may be 

reproduced for the paths connecting Mj to M. The functional associated 

with a path having k displacements X and (rn - j - Xk) displacements of 
length +1, when leaving Mj to reach M9 is 

F^^iM-j; M) = am-d-xk x bk , (2.11) 

where k may vary from 0 to —r—^- . Combining equations (2.9) and (2.11), 

one finally obtains 

CVji M) = E TbFl^Mj; M) 
rm^jh (2.12) 

= ± am~i-^ x bk+1(m ~ J \ k ( X - l ) ) ; for j = 1, .... A - 1 

and 777 ̂  J . 

The domain of definition of (2.12) can easily be extended to include the 

region 0 < m < j with the understanding that the result of the operation, 

^ > f ° r 0 < 777 < J, 
k = 0 

i s exac t ly zero , so as to recover equat ion ( 2 . 8 ) . With t h i s d e f i n i t i o n in 
mind, the genera l so lu t ion of the F ibonacc i - l ike recurs ion r e l a t i o n (2.1) 
subject to the boundary condi t ions (2.2) i s 

Bm = t ^C(Jd ; M) 
3-0 

[SLZ£\ ( 2 . 1 3 ) 

= E V E a"-'-*V + 1 - a « ( n ~ ' ~,fe(A_1)). 
j - 0 fc-0 ^ K ' 

In (2.13), 60j- is Kronecker's symbol, which is zero for j ^ 0, and unity 

otherwise. 
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3. THE STANDARD SOLUTION AND GENERATING FUNCTIONS 

The standard solution of equation (2.1) is obtained by searching for 

special solutions of the form [4]: 

Bm = Rm« (3.1) 

By requiring expression (3.1) to satisfy the recursion relation (2.1), 

one finds that the only possible values of R are the roots of the so-called 
characteristic equations which, in this case, is of order X; namely, 

Rx - oRx~1 - b = 0. (3.2) 

This equation has X roots we refer to as R^, with index k varying from 1 

to X. The general solution of equation (2.1) is then presented in the form 

x 
Bm = 2J

 LkRk5 
k = l 

where Lk are unspecified parameters. 

Next, we will be developing a class of generating functions to the 

series of coefficients Bm. Following Hock and McQuistan [5], we consider 

functions um(x) satisfying the recurrence relations 

um(x) = A(x)um_l(x) + B(x)um_x(x)» (3.4) 

A(x) and B(x) are some chosen functions of x restricted to take on the 

values 
A(x0) = a, B(xQ) = b, (3.5) 

when the variable x = xQ. Furthermore, for any value of the variable x5 

one also requires 

W_A+JO*0 = A7*» f o r J = 1> . .., X - 1 
(3.6) 

u0(x) = A0. 

Clearly, um(x) evaluated at x = xQ is precisely Bm5 whose explicit expres-

sion was obtained via the CFT method,namely, equation (2.13). The bivar-

iant generating function u(x$ y) is given by [5]: 

00 

u(x, y) = ^ um(x)ym. (3.7) 
m = 0 
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One separates the summation over m into two pieces as follows: 

A - l co 

u(x, y) = J^um(x)ym + JT um(x)ym. (3.8) 
777 = 0 m = X 

Next, one replaces um(x) appearing in the second summation by the right-
hand side of the recurrence relation (3.4), 

j^um{x)ym = t , A(x)um_1(x)ym + t , B(x)um_x(x)y™. (3.9) 
772 = A m= X m= X 

It is straightforward to recognize that 

A - l 

E 
777 = 1 777 = 1 " 7 7 2 = 1 

Yt^A(x)um_1(x)ym = Tl^A(x)um_1(x)um_1(x)ym - T,A(x)um_1(x)ym 

(3.10) 
A-I 

= A(x)ymu(x, y)-Yi A(x)um_1(x)ym, 
7 7 7 = 1 

and, a l s o , t ha t 

£ B(x)um-X(x)ym = B(x)yxu(x, y). (3.11) 
777 = A 

Combining (3.8), (3.9), and (3.10) and (3.11), one finds 

A - l A - l 

u(x, y) [1 - A(x)y - B(x)yx] = £ um(x)ym - £ A{x)un^ (x)y™. (3.12) 
772 = 0 777= 1 

A last manipulation on the right-hand side of equation (3.12) is possible 

to obtain the explicit form of the bivariant generating function u(x9 y); 
namely, 

A - l A - l A - l 

Y,um(x)ym- Y,A(x)u
m-i(x)ym = ̂ 0 W + £ [um&)-Mx)um_1(x)]ym. (3.13) 

m = l 772=1 7 7 7 = 1 

This is followed by the use of the recurrence relation (3.4) and its ini-

tial conditions (3.6): 

A - l A - l X - l 

£ [um(x) - A(x)um^x)] = £ B(x)um_x(x)y™ = £ B{x)knym. (3.14) 
772=1 772=1 m ~ l 

Finally, combining equations (3.12), (3.13), (3.14), and, again, (3.6), one 

finds 

A0 + B(aj)JAy 
u(x, y) = . (3.15) 

1 - A{x)y + B(x)yx 
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Equation (3.15) is a generalization of the bivariant generating function 

of [5], where Kj = 0 for j = 1 to A - 1, AQ = 1, A(x) = 1, and B(x) = x. 

4. SUM RULES 

The two approaches presented in Sections 2 and 3 must be equivalent. 

By making use of this equivalence, a sum rule will naturally emerge. One 

sets x = x0 in equations (3.7) and (3.15), and takes into account the re-

strictions A(xQ) = a, B(xQ) = b, and the property um(xQ) = Bm. It then 

follows that 

±Bmy«s ^ 1 — = i ^ (4.1) 
m = o 1 - ay - byx I - ay - byx 

Let 

f(y) = 1 - ay - byK (4.2) 

This polynomial is of order A; it has A roots we call y,9 k = 1, . .., A. 

When comparing equations (4.2) and (3.2), it is evident that the roots Rk 

of equation (3.2) are the inverses of the roots y, of equation (4. 2) , i.e., 

yk-j-k. (4-3) 

The standard expension of „ . . in terms of the zeros of the function f(y) 

is 

~Ny) ~S Yz~yl ~ "fc?i i - J /V (4"4) 

and the residue Dk is obtained in the usual manner as 

D-, = lim j?, N = - ̂ 77 r- = (4.5) 
k y + yk f(¥) f'(yk) a + bXR\^ 

Thus, equation (4.1) yields 

E^=i:V^yz:—k—— T^w, (4-6) 

The left-hand side (lhs) of equation (4.6) contains Bm whose explicit 

dependence on hj has been derived in Section 2, equation (2.13). It can 

be written as 
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fm - «n 

(lbs) = X Aj±y» ± a»-'->*bk + 1-S»(m - j " HX ~ 1 } ) . (4.7) 
0=0 m=0 k=0 X K / 

The right-hand side (rhs) of equation (4.6) can be rearranged using the 

power series expansion of (1 - yRy)'1 to yield 

x-i n , » A Rl'1 

(rhs) = £ fc1"50^,- L ^ ' + T T (4.8) 
5=0 m = 0 *-la + b\R\~ 

Recalling that 2 = 0 for 0 < m < j , then 
k = o 

(Ihs) = £ A b1-^ £ y £ a!»-i-^bk(m ~ J' \k{X ~ l)). (4.9) 

Also, making the shift m ^ m - j in the summation index m of (4.8), one 
has 

^ i-«0,A A ^ Rk (As) = E z/~°%- Y, yH r- (4-10> 

Clearly, since (lhs) and (rhs) are equivalent expressions, and, since 

AJ are completely arbitrary parameters, one necessarily has the identity: 

l±a^bHm ~ i " k<X ~ lA E £ —± , (4.11) 
fc = o v K > k - i a + bXR\'x 

which holds for m ̂  j ^ 0, or, simply, 

^ V ^ W ™ - fe(,A " 1}) E £ ^ . for „ > 0. (4.12) 
* = o \ * / fe-i a + Mi?^"A 

This identity reproduces the one derived by Hock and McQuistan [5] for 

a=b= 1 and any value of A, and the sum rule derived by Phares and Simmons 

[4] for X = 2 and arbitrary values of a and £>. Indeed, for A= 2, the two 

roots R1 and R2 of equations (3.2) are (see [4]): 

R1 = (1/2) [a + (a2 + 42?)*], 

i?2 = (1/2) [a - (a2 + 46)*]. 
(4.13) 

It is then easy to check that the left-hand side of equation (4.11), with 

A=2, and, the values of R± and R2 given by equation (4.13), becomes 
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r> m+ 1 

y k , [a + (a2 + 4fc)*] - [a - (a2 + 4fc)*f+ 1
 f, w , 

2^ 7 - . (4.14) 
fc-ia + 2&i^1 2m+1(a2 + 4&)* 

Equation (4.14) shows that equation (4.12) reduces, for A = 2, to equation 

(4.10) of [4]. 

5. CONCLUSION 

A Fibonacci recurrence relation with constant coefficients has been 

solved exactly for arbitrary initial conditions using the combinatorics 

function techniques. A class of generating functions involving two arbi-

trarily chosen functions A(x) and B(x) has been obtained. The method of 

Hock and McQuistan applied to the generating function and combined with 

the CFT solution leads to a sum rule that reproduces the two special cases 

discussed in [4] and [5]. 

The flexibility shown in the application of the CFT method in the sim-

ple case presented here is not an exception. More complicated problems have 

been solved involving two-dimensional, homogeneous, three-term difference 

equations with variable coefficients. The interested reader may refer to 

[6]. 
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