$\diamond \diamond \diamond \diamond \diamond \diamond$

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

H. J. J. te RIELE

Mathematical Centre, Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands (Submitted June 1982)

1. INTRODUCTION

As usual, let $\sigma(n)$ denote the sum of all the divisors of n [with $\sigma(1) = 1$] and let $\omega(n)$ denote the number of different prime factors of n [with $\omega(1) := 0$]. The set of prime numbers will be denoted by \mathscr{P} . The set of hyperperfect numbers (HP's) is the set $M := \bigcup_{n=1}^{\infty} M_n$, where

$$M_n := \{ m \in \mathbf{N} \mid m = 1 + n[\sigma(m) - m - 1] \}.$$
(1)

We also define the sets

$$_{k}M_{n} := \{m \in M_{n} | \omega(m) = k\}, k, n \in \mathbf{N},$$
 (2)

and $_kM := \bigcup_{n=1}^{\infty} _kM_n$; clearly, we have $M_n = \bigcup_{k=1}^{\infty} _kM_n$. We will also use the related set $M^* := \bigcup_{n=1}^{\infty} M_n^*$, where

$$M_{n}^{\star} := \{ m \in \mathbf{N} | m = 1 + n[\sigma(m) - m] \},$$
(3)

and the sets

$$_{k}M_{n}^{*} := \{m \in M_{n}^{*} | \omega(m) = k\}, \ k \in \mathbb{N} \cup \{0\}, \ n \in \mathbb{N},$$
(4)

and $_{k}M^{*} := \bigcup_{n=1}^{\infty} _{k}M_{n}^{*}$, so that also $M_{n}^{*} = \bigcup_{k=0}^{\infty} _{k}M_{n}^{*}$. It is not difficult to verify that $_{1}M_{n} = \emptyset$, $\forall n \in \mathbb{N}$, and that

$$\begin{cases} {}_{0}M_{n}^{*} = \{1\}, \forall n \in \mathbb{N} \text{ and} \\ \\ {}_{1}M_{n}^{*} = \begin{cases} \{(n+1)^{\alpha}, \alpha \in \mathbb{N}\}, \text{ if } n+1 \in \mathscr{P}, \\ \\ \emptyset, & \text{ if } n+1 \notin \mathscr{P}. \end{cases} \end{cases}$$
(5)

 M_1 is the set of perfect numbers [for which $\sigma(m) = 2m$]. The *n*-hyperperfect numbers M_n , introduced by Minoli and Bear [1], are a meaningful generalization of the even perfect numbers because of the following rule.

[Feb.

<u>RULE 0</u> (from [2]): If $p \in \mathscr{P}$, $\alpha \in \mathbb{N}$, and if $q := p^{\alpha+1} - p + 1 \in \mathscr{P}$, then $p^{\alpha}q \in M_{p-1}$.

There are 71 hyperperfect numbers below 10^7 (see [2], [3], [4], [5]). Only one of them belongs to $_{3}M$, all others are in $_{2}M$. In [6] and [7] the present author has constructively computed several elements of $_{3}M$ and two of $_{4}M$.

In Section 2 of this paper, we shall give rules by which one may find (with enough computer time) an element of $_{(k+2)}M_n$ and of $_{(k+1)}M_n$ from an element of $_kM_n^*$ ($k \ge 0$), and an element of $_kM_n^*$ from an element of $_{(k-2)}M_n^*$ ($k \ge 2$). Because of (5), this suggests the possibility to construct HP's with k different prime factors for any positive integer $k \ge 2$. By actually applying the rules, we have found many elements of $_3M$, seven elements of $_\mu M$, and one element of $_5M$.¹

In Section 3, necessary and sufficient conditions are given for numbers of the form $p^{\alpha}q$, $\alpha \in \mathbf{N}$, to be hyperperfect. For example, for $\alpha \ge 3$, these conditions imply that there are no other HP's of the form $p^{\alpha}q$ than those characterized by Rule 0. The results of this section enable us to compute very cheaply $\alpha \mathcal{II}$ HP's of the form $p^{\alpha}q$ below a given bound. Unfortunately, we have not been able to extend these results to more complicated HP's like those of the form $p^{\alpha}q^{\beta}$, $\alpha \ge 2$ and $\beta \ge 2$, or $p^{\alpha}q^{\beta}r^{\gamma}$ with $\alpha \ge 1$, $\beta \ge 1$ and $\gamma \ge 1$, etc. (However, these numbers are extremely scarce compared to HP's of the form $p^{\alpha}q$, and no HP's of the form $p^{\alpha}q^{\beta}$ and $p^{\alpha}q^{\beta}r^{\gamma}$ with $\alpha \ge 2$ and $\beta \ge 2$ have been found to date.)

Because of the importance of the set M^* for the construction of hyperperfect numbers, we given in Section 4 the results of an exhaustive search for all $m \in M^*$ with $m \leq 10^8$ and $\omega(m) \geq 2$. It turned out that elements of $_{3}M^*$ are very rare compared with $_{2}M^*$, in analogy with the sets $_{3}M$ and $_{2}M$. This search also gave all elements $\leq 10^8$ of M, at very low cost, because of the similarity of the equations defining M^* and M. See note 1 below.

The paper concludes with a few remarks, in Section 5, on a possible generalization of hyperfect numbers to so-called hypercycles, special cases of which are the ordinary perfect numbers and the amicable number pairs.

¹Lists of these numbers may be obtained from the author on request.

<u>Remark</u>: After completing this paper, the author computed, with the rules given in Section 2, 860 HP's below the bound 10^{10} . See note 1 above.

2. RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

We have found the following rules [we write \overline{a} for $\sigma(a)$]:

<u>RULE</u> 1: Let $k \in \mathbb{N}$, $n \in \mathbb{N}$, $a \in {}_k M_n^*$, and $p := n\overline{a} + 1 - n$; if $p \in \mathscr{P}$, then $ap \in {}_{(k+1)}M_n$.

<u>RULE 2</u>: Let $k \in \mathbb{N} \cup \{0\}$, $n \in \mathbb{N}$, $a \in {}_k M_n^*$, and $p := n\overline{a} + A$, $q := n\overline{a} + B$, where $AB = 1 - n + n\overline{a} + n^2 \overline{a}^2$; if $p \in \mathscr{P}$ and $q \in \mathscr{P}$, then $apq \in {}_{(k+2)}M_n$.

<u>RULE 3</u>: Let $k \in \mathbb{N} \cup \{0\}$, $n \in \mathbb{N}$, $a \in {}_kM_n^*$, and $p := n\overline{a} + A$, $q := n\overline{a} + B$, where $AB = 1 + n\overline{a} + n^2\overline{a}{}^2$; if $p \in \mathscr{P}$ and $q \in \mathscr{P}$, then $apq \in {}_{(k+2)}M_n^*$.

The proofs of these rules don't require much more than the application of the definitions, and are therefore left to the reader. In fact, the proof of Rule 2 was already given in [7], although the rule itself was formulated there less explicitly.

Rule 1 can be applied for $k \ge 1$, but not for k = 0, since ${}_{0}M_{n}^{*} = \{1\}$ and a = 1 gives $p = 1 \notin \mathscr{P}$. For k = n = 1, Rule 1 reads:

If $p := 2^{\alpha+1} - 1 \in \mathscr{P}$, then $2^{\alpha}p \in {}_{2}M_{1}$,

which is Euclid's rule for finding even perfect numbers. For k = 1, Rule 1 is equivalent to Rule 0, given in Section 1.

Rules 2 and 3 can both be applied for $k \ge 0$. For instance, for k = 0, Rule 2 reads:

> Let $n \in \mathbf{N}$ be given; if $p := n + A \in \mathscr{P}$ and $q := n + B \in \mathscr{P}$, where $AB = 1 + n^2$, then $pq \in {}_2M_n$.

For n = 1, 2, and 6, this yields the hyperperfect numbers 2×3 , 3×7 , and 7×43 , respectively. Rule 3 reads, for k = 0:

Let
$$n \in \mathbf{N}$$
 be given; if $p := n + A \in \mathscr{P}$ and $q := n + B \in \mathscr{P}$,
where $AB = 1 + n + n^2$, then $pq \in {}_{2}M_{n}^{*}$.

For n = 4 and n = 10, we find that $7 \times 11 \in {}_2M_4^*$ and $13 \times 47 \in {}_2M_{10}^*$, respectively.

[Feb.

Rule 3 shows a rather curious "side-effect" for $k \ge 1$: if both the numbers p and q in this rule are prime, then not only $apq \in {}_{(k+2)}M_n^*$, but also the number b := pq is an element of ${}_2M_{n\overline{a}}^*$. Indeed, we have

$$\frac{b-1}{\sigma(b)-b} = \frac{pq-1}{p+q+1} = \frac{n^2\overline{a}^2 + n\overline{a}(A+B) + AB - 1}{2n\overline{a} + A + B + 1}$$
$$= \frac{n^2\overline{a}^2 + n\overline{a}(A+B) + n\overline{a} + n^2\overline{a}^2}{2n\overline{a} + A + B + 1} = n\overline{a} \in \mathbf{N}.$$

For example, we know that $7 \times 11 \in {}_{2}M_{\mu}^{\star}$. From Rule 3 with k = 2, n = 4, and $\alpha = 7 \times 11$, we find that $7 \times 11 \times 547 \times 1291 \in {}_{\mu}M_{\mu}^{\star}$; the side-effect is that

$$547 \times 1291 \in {}_{2}M^{\star}_{(4 \times 8 \times 12)} = {}_{2}M^{\star}_{384}.$$

In [6] we gave the following additional rule.

<u>RULE</u> 4: Let $t \in \mathbb{N}$ and p := 6t - 1, q := 12t + 1; if $p \in \mathscr{P}$ and $q \in \mathscr{P}$, then $p^2q \in {}_2M_{(4t-1)}$.

For example, t = 1 and t = 3 give $5^2 13 \in {}_2M_3$ and $17^2 37 \in {}_2M_{11}$, respectively. In Section 3 we will prove that with Rules 1, 2, and 4 it is possible to find all HP's of the form $p^{\alpha}q$, $\alpha \in \mathbf{N}$, below a given bound. We leave it to interested readers to discover why there is no rule (at least for $k \ge 1$), analogous to Rule 1, for finding an element of ${}_{(k+1)}M_n^*$ from an element of ${}_kM_n^*$.

From Rules 1-3, it follows that elements of ${}_{k}M_{n}$ for some given $k \in \mathbb{N}$ may be found from ${}_{(k-1)}M_{n}^{*}$ (with Rule 1) and from ${}_{(k-2)}M_{n}^{*}$ (with Rule 2) provided that sufficiently many elements of ${}_{(k-1)}M_{n}^{*}$ resp. ${}_{(k-2)}M_{n}^{*}$ are available; these can be found with Rule 3 and the "starting" sets ${}_{0}M_{n}^{*}$ and ${}_{1}M_{n}^{*}$ given in (5). We have carried out this "program" for the constructive computation of HP's with three, four, and five different prime factors.

(i) Construction of elements of ${}_{3}M_{n}$. With Rule 1, we found 34 HP's of the form pqr, from numbers $pq \in {}_{2}M_{n}^{*}$:

the smallest is 61 \times 229 \times 684433 \in $_{3}M_{4.8};$

the largest one is 9739 \times 13541383 \times 1283583456107389 $\in \ _{3}M_{9\,7\,3\,2}$.

The elements of ${}_{2}M_{n}^{\star}$ were "generated" with Rule 3 from ${}_{0}M_{n}^{\star} = \{1\}$. Using Rule 2 we found, from prime powers $p^{\alpha} \in {}_{1}M_{n}^{\star}$, 67 HP's of the form pqr:

1984]

five of the smallest are given in [6],

the largest is 8929 \times 79727051 \times 577854714897923 $\in {}_{3}M_{8928}$;

48 HP's of the form p^2qr ,

the smallest five are given in [6],

the largest is $7459^2414994003583 \times 34444004601637408163219 \in {}_{3}M_{7458}$; 9 of the form p^3qr ,

the smallest is given in [6],

the largest is $811^3432596915921 \times 89927962885420066391 \in {}_{3}M_{810}$; 4 of the form p^4qr ,

the smallest is $7^430893 \times 36857 \in {}_{3}M_6$,

the largest is $223^4553821371657 \times 130059326113901 \in {}_{3}M_{2222}$;

and, furthermore,

 $7^{6}1340243 \times 2136143 \in {}_{3}M_{6}$,

 $13^{7}815787979 \times 11621986347871 \in M_{12}$,

and

 $19^8 322687706723 \times 11640844402910006759 \in {}_{3}M_{18}$.

(ii) Construction of elements of ${}_{4}M_{n}$. In order to construct elements of ${}_{4}M_{n}$ with Rule 1, sufficiently many elements of ${}_{3}M_{n}^{\star}$ had to be available. This was realized with Rule 3, starting with elements $p^{\alpha} \in {}_{1}M_{(p+1)}$, $p \in \mathscr{P}$. The following four HP's with four different prime factors were found:

 $\begin{array}{l} 3049 \ \times \ 9297649 \ \times \ 69203101249 \ \times \ 5981547458963067824996953 \ \in \ _4M_{3\,0\,4\,8}, \\ 4201 \ \times \ 17692621 \ \times \ 7061044981 \ \times \ 2204786370880711054109401 \ \in \ _4M_{4\,2\,0\,0}, \\ 181^25991031 \ \times \ 579616291 \ \times \ 20591020685907725650381 \ \in \ _4M_{1\,8\,0}, \end{array}$

 $181^31108889497 \times 33425259193 \times 39781151786825440683346549261 \in {}_4M_{180}$. By means of Rules 2 and 3, the following three additional elements of ${}_4M_n$ were found:

$$\begin{split} &1327\,\times\,6793\,\times\,10020547039\,\times\,17769709449589\,\in\,_4M_{1110} \text{ (is in [6]),}\\ &1873\,\times\,24517\,\times\,79947392729\,\times\,80855915754575789\,\in\,_4M_{1740} \text{ (is in [7]),}\\ &5791\,\times\,10357\,\times\,222816095543\,\times\,482764219012881017\,\in\,_4M_{3714}. \end{split}$$

(iii) Construction of an element of ${}_{5}M_{n}$. We have also constructively computed one element of ${}_{5}M_{n}$ with Rule 1. The elements of ${}_{4}M_{n}^{*}$ needed for this purpose were computed from ${}_{0}M_{n}^{*}$ by twice applying Rule 3 (first yield-ing elements of ${}_{2}M_{n}^{*}$, then elements of ${}_{4}M_{n}^{*}$). The HP found is the largest 54 [Feb.

one we know of (apart from the ordinary perfect numbers). It is the 87digit number:

209549717187078140588332885132193432897405407437906414

236764925538317339020708786590793

= 4783 × 83563 × 1808560287211 × 297705496733220305347

× 973762019320700650093520128480575320050761301 $\in M_{4,5,2,4}$.

3. CHARACTERIZATION OF ALL HP'S OF THE FORM $p^{\alpha}q$

The hyperperfect numbers of the form $p^{\alpha}q$ are characterized by the following theorem.

Theorem: Let $m := p^{\alpha}q$ ($\alpha \in \mathbb{N}$, $p \in \mathscr{P}$, $q \in \mathscr{P}$) be a hyperperfect number, then

- (i) $\alpha = 1 \Rightarrow (\exists n \in \mathbb{N} \text{ with } m \in {}_2M_n \text{ such that } p = n + A, q = n + B, \text{ with}$ $AB = 1 + n^2$;
- (ii) $\alpha = 2 \Rightarrow (\exists t \in \mathbb{N} \text{ with } m \in {}_{2}M_{(4t-1)} \text{ and } p = 6t 1 \text{ and } q = 12t + 1)$ $\vee (m \in {}_{2}M_{(p-1)} \text{ with } q = p^{3} - p + 1);$
- (iii) $\alpha > 2 \Rightarrow (m \in {}_2M_{(p-1)} \text{ with } q = p^{\alpha+1} p + 1).$

<u>Proof</u>: (i) This case follows immediately from Rule 2 (with k = 0). (ii) If p^2q is hyperperfect, then the number $(p^2q - 1)/((p + 1)(p + q))$ must be a positive integer. Consider the function

$$f(x, y) := \frac{x^2y - 1}{(x+1)(x+y)}, x, y \in \mathbf{N}.$$

To characterize all pairs x, y for which $f(x, y) \in \mathbb{N}$, we can safely take $x \ge 2$ and $y \ge 2$. Let $x \ge 2$ be fixed, then we have for all $y \ge 2$,

$$f(x, y) < \frac{x^2 y}{(x+1)(x+y)} < \frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}.$$

Hence, the largest integral value which could possibly be assumed by f is x - 1, and one easily checks that this value is actually assumed for $y = x^3 - x + 1$. So we have found

$$f(x, x^{3} - x + 1) = x - 1, x \in \mathbf{N}, x \ge 2.$$
(6)

One also easily checks that f is monotonically increasing in y (x fixed), so that

$$2 \leqslant y \leqslant x^3 - x + 1. \tag{7}$$

1984]

Now, in order to have $f \in \mathbf{N}$, it is necessary that x + 1 divides $x^2y - 1$, or, equivalently, that x + 1 divides y - 1, since

$$\frac{x^2y-1}{x+1} = y(x-1) + \frac{y-1}{x+1}.$$

Therefore, we have y = k(x + 1) + 1, with $k \in \mathbb{N}$ and $1 \le k \le x(x - 1)$ by (7). Substitution of this into f yields

$$f(x, y) = \frac{kx^2 + x - 1}{(k+1)(x+1)} = x - 1 - \frac{x^2 - x - k}{(k+1)(x+1)} = x - 1 - g(x, k).$$

It follows that x + 1 must divide $x^2 - x - k$, or, equivalently, that x + 1 must divide k - 2. Hence, k = j(x + 1) + 2, with $j \in \mathbb{N} \cup \{0\}$ and $0 \leq j \leq x - 2$. Substitution of this into g yields

$$g(x, j(x + 1) + 2) = \frac{x - 2 - j}{j(x + 1) + 3}.$$

This function is decreasing in j, and for j = 0, 1, ..., x - 2 it assumes the values: g(x, 2) = (x - 2)/3,

$$g(x, x + 3) = \frac{x - 3}{x - 4} < 1,$$

$$\vdots$$

$$g(x, x(x - 1)) = 0.$$

It follows that there is precisely one more possibility [in addition to (6)] for f to be a positive integer, viz., when j = 0, k = 2, y = 2x + 3, and $x \pmod{3} = 2$. So we have found

$$f(3t - 1, 6t + 1) = 2t - 1, t \in \mathbf{N}.$$
 (8)

[Feb.

The statement in the Theorem now easily follows from (6) and (8).

(iii) As in the proof of (ii), we now have to find out for which values of $x, y \in \mathbf{N}, x \ge 2$, and $y \ge 2$, the function $f(x, y) \in \mathbf{N}$, where

$$f(x, y) := \frac{x^{\alpha}y - 1}{(x^{\alpha - 1} + \cdots + 1)(x + y)}, \ \alpha > 2.$$

For fixed $x \ge 2$, we have

$$f(x, y) < \frac{x^{\alpha}}{x^{\alpha-1} + \cdots + 1} = x - 1 + \frac{1}{x^{\alpha-1} + \cdots + 1}$$

As in the proof of (ii) we find that f(x, y) = x - 1 for $y = x^{\alpha+1} - x + 1$ and that $2 \le y \le x^{\alpha+1} - x + 1$. Furthermore, $x^{\alpha-1} + \cdots + 1$ must divide $x^{\alpha}y - 1$, so that $y = k(x^{\alpha-1} + \cdots + 1) + 1$, with $1 \le k \le x(x - 1)$. Substitution of this into f yields a certain function g, in the same way as in the proof of (ii), but in this case g can only assume integral values for k = x(x - 1). This implies the statement in the Theorem, case (iii). Q.E.D.

It is easy to see that the characterizations given in this Theorem are equivalent to Rule 2 (k = 0) when $\alpha = 1$, to Rule 4 or Rule 1 (k = 1) when $\alpha = 2$, and to Rule 1 (k = 1) when $\alpha > 2$.

This Theorem enables us to find very cheaply all HP's of the form $p^{\alpha}q$, $\alpha \in \mathbf{N}$, below a given bound. For example, to find all HP's in M_n of the form pq below 10⁸, we only have to check whether

$$p := n + A \in \mathscr{P}$$
 and $q := n + B \in \mathscr{P}$

for all possible factorizations of $AB = 1 + n^2$, for $1 \le n \le 4999$. This range of *n* follows from the fact that if $pq \in M_n$ then $pq > 4n^2$. The following additional restrictions can be imposed on *n*:

- (i) n should be 1 or even since, if n is odd and $n \ge 3$, then $n^2 + 1 \equiv 2$ (mod 4), so that one of A or B is odd and one of p or q is even and ≥ 4 .
- (ii) If $n \ge 3$, then $n \equiv 0 \pmod{3}$, since if $n \equiv 1$ or 2 (mod 3), then $n^2 + 1 \equiv 2 \pmod{3}$, so that one of A or B is $\equiv 1 \pmod{3}$ and the other is $\equiv 2 \pmod{3}$; consequently, one of p or q is $\equiv 0 \pmod{3}$ and > 3.

Hence, the only values of n to be checked are n = 1, n = 2, and n = 6t, $1 \le t \le 833$. It took about 6 seconds CPU-time on a CDC CYBER 175 computer to check these values of n, and to generate in this way all HP's of the form pq below 10^8 .

4. EXHAUSTIVE COMPUTER SEARCHES

From the rules given in Section 2, it follows that it is of importance to know elements of M^* when one wants to find elements of M. Therefore,

1984]

we have carried out an exhaustive computer search for all elements of M^* below the bound 10^8 . Because of (5) the search was restricted to elements with at least two different prime factors. A check was done to determine whether $(m - 1)/(\sigma(m) - m) \in \mathbf{N}$, for all $m \leq 10^8$ with $\omega(m) \geq 2$. Since the most time-consuming part is the computation of $\sigma(m)$, a second check was done to determine whether $(m - 1)/(\sigma(m) - m - 1) \in \mathbf{N}$ [in the case where $(m - 1)/(\sigma(m) - m) \notin \mathbf{N}$]. If so, m was an HP; thus, our program also produced, almost for free, all HP's below 10^8 . (The search took about 100 hours of "idle" computer time on a CDC CYBER 175.) The results are as follows.

Apart from the ordinary perfect numbers, there are 146 HP's below 10^8 . Only two of them have the form $p^{\alpha}qr$:

 $13 \times 269 \times 449 \in {}_{3}M_{12}$ and $7^2383 \times 3203 \in {}_{3}M_6$;

these were also found in the searches described in Section 2. All others have the form characterized in Section 3, and could have been found with a search based on that characterization (using the fact that if $p^{\alpha}q \in {}_{2}M_{n}$, then p > n and q > n). A question that naturally arises is the following: Are there any HP's that can*not* be constructed with one of Rules 1, 2, or $4?^{2}$

There are 312 numbers $m \le 10^8$ which belong to M^* and which have $\omega(m) \ge 2$. Of these, 306 have the form pq and could have been (and, as a check, actually were) found very cheaply with Rule 3 of Section 2. The others are:

7 × 61 × 229 $\in_{3}M_{6}^{*}$, 113 × 127 × 2269 $\in_{3}M_{58}^{*}$, 149 × 463 × 659 $\in_{3}M_{96}^{*}$, 19 × 373 × 10357 $\in_{3}M_{18}^{*}$, 151 × 373 × 1487 $\in_{3}M_{100}^{*}$, 7 × 11 × 547 × 1291 $\in_{4}M_{4}^{*}$;

the second, third, and fifth numbers could not have been found using Rule 3.

 $^2 \, {\rm The}\,$ referee has answered this question in the affirmative by giving the example 12161963773 = 191 \times 373 \times 170711 \in ${\rm M}_{\rm 126}.$

[Feb.

5. HYPERCYCLES

A possible generalization of hyperperfect numbers can be obtained as follows. Let $n \in \mathbf{N}$ be given, and define the function $f_n : \mathbf{N} \setminus \{1\} \Rightarrow \mathbf{N}$ as

$$f_n(m) := 1 + n[\sigma(m) - m - 1], \ m \in \mathbf{N} \setminus \{1\}.$$
(9)

Starting with some $m_0 \in \mathbf{N} \setminus \{1\}$, one might investigate the sequence

$$m_0, f_n(m_0), f_n(f_n(m_0)), \dots$$
 (10)

For n = 1, this is the well-known aliquot sequence of m_0 , which can have cycles of length 1 (perfect numbers), length 2 (amicable pairs), and others. In order to get some impression of the cyclic behavior for n > 1, we have computed, for $2 \le n \le 20$, five terms of all sequences (10) with starting term $m_0 \le 10^6$, and we have registered the cycles with length ≥ 2 and ≤ 5 in the following table.

TABLE 1

HYPERCYCLES*

-		
п	k	$m_0, m_1, \ldots, m_{k-1}$
5	2	$19461 = 3 \times 13 \times 499$, $42691 = 11 \times 3881$
7	3	$925 = 5^2 37$, $1765 = 5 \times 353$, $2507 = 23 \times 109$
8	2	$28145 = 5 \times 13 \times 433, 66481 = 19 \times 3499$
	3	$238705 = 5 \times 47741$, $381969 = 3^{3}7 \times 43 \times 47$, $2350961 = 79 \times 29759$
	4	$94225 = 5^2 3769$, $181153 = 7^2 3697$, $237057 = 3 \times 31 \times 2549$,
		$714737 = 61 \times 11717$
	2	$3452337 = 3^27 \times 54799$, $17974897 = 53 \times 229 \times 1481$
9	2	$469 = 7 \times 67, \ 667 = 23 \times 29$
	2	$1315 = 5 \times 263, 2413 = 19 \times 127$
	2	$1477 = 7 \times 211, 1963 = 13 \times 151$
	2	$2737 = 7 \times 17 \times 23, 6463 = 23 \times 281$
10	3	$1981 = 7 \times 283$, $2901 = 3 \times 967$, $9701 = 89 \times 109$
12	2	$697 = 17 \times 41$, $2041 = 13 \times 157$
	2	$3913 = 7 \times 13 \times 43$, $12169 = 43 \times 283$
	2	$54265 = 5 \times 10853$, $130297 = 29 \times 4493$
14	2	$1261 = 13 \times 97$, $1541 = 23 \times 67$
	3	$508453 = 11 \times 17 \times 2719$, $1106925 = 3 \times 5^2 14759$,
		$10126397 = 281 \times 36037$

*Different numbers m_0 , m_1 , ..., m_{k-1} such that $m_k = m_0$, where $m_{i+1} := f_n(m_i)$, f_n defined in (9).

TABLE 1 (continued)

п	k	$m_0, m_1, \ldots, m_{k-1}$
19	2	$9197 = 17 \times 541, \ 10603 = 23 \times 461$
	4	$184491 = 3^{3}6833$, $1688493 = 3 \times 562831$, $10693847 = 709 \times 15083$, $300049 = 31 \times 9679$
	2	$5151775 = 5^2 251 \times 821$, $24124073 = 89 \times 271057$

REFERENCES

- 1. D. Minoli & R. Bear. "Hyperperfect Numbers." *Pi Mu Epsilon* (Fall 1975), pp. 153-57.
- D. Minoli. "Issues in Nonlinear Hyperperfect Numbers." Math. Comp. 34 (1980):639-45.
- 3. D. Minoli. Abstracts of the AMS 1, No. 6 (1980):561.
- 4. D. Minoli. Private communication dated August 15, 1980.
- 5. D. Minoli. "Structural Issues for Hyperperfect Numbers." The Fibonacci Quarterly 19 (1981):6-14.
- 6. H. J. J. te Riele. "Hyperperfect Numbers with Three Different Prime Factors." *Math. Comp.* 36 (1981):297-98.
- H. J. J. te Riele. "Hyperperfect Numbers with More then Two Different Prime Factors." Report NW 87/80. Amsterdam: Mathematical Centre, August 1980.

[Feb.