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INTRODUCTION AND BACKGROUND 

Given an ordered s e t of n nonnega t ive i n t e g e r s , 

S1 = (a , b, . . . , m, n ) , 

define a linear transformation T : S1 -> S2> where 

S2 = (\a - b\, | & - e | , ..., | m - n | , | n - a | ) . 

Upon iteration of this transformation, a sequence of n-tuples of nonnegative 
integers is created. This sequence is called "the n-number game." 

The n-number game has been considered primarily in the form of the four-
number game. For example, 

5X = (37, 17, 97, 28), 
Sz = (20, 80, 69, 9), 
S3 = (60, 11, 60, 11), 
Sn = (49, 49, 49, 49), 
S5 = (0, 0, 0, 0). 

It is well known that the 2m-number game will always terminate (i.e., reach a 
2m-tuple of all zeros) [7], [10]. 

The domain of the elements of the n-number game can be extended to the reals 
with some interesting consequences (e.g., see [3], [6]). However, such exten-
sions will not be dealt with in this paper. 

Let us note three well-known properties of the n-number game and make a 
definition. 

(1) There exists a positive integer k such that S^ is an n-tuple all of 
elements are 0's and aTs (e.g., see [1]). 

Using Property (1), we will make the following definition. 

Definition: The length of the sequence beginning with S19 \S1\9 Is m - 1, where 
m is the smallest integer such that the elements of Sm + j< are all 0Ts and a!s 
for k > 0. 

If a ^ 0, we will say that the sequence cycles. 

(2) If Si = (ad, bd, ..., nd) = d(a, b, ..., n) = dS*9 then \si\ = |s*|. 
(This is easily proven.) 

(3) The necessary and sufficient condition for a "parent" to exist for a 
given n-tuple S± is that S^ can be partitioned into two subsets where 
the sum of the elements in each subset is the same (e.g., see [1]). 

Property (3) implies that, with the exception of the trivial case, the odd-number 
game will always cycle. To see this, assume that the odd-number game terminates 
and work backward. If 3 ̂  0,a simple parity argument shows that (3, 3, ..., 3) 
cannot have a parent if n is odd. 
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An n-tuple will be called an "orphan" if it has no parent. From Property 
(3), if S1 is not an orphan, no permutation of S1 is one; the converse is also 
true. In the example, S1 = (37, 17, 97, 28) is an orphan. If S± is not an or-
phan, a parent that is not an orphan is not necessarily unique. An example of 
this is the case where 51 = (5, 3, 8), SQ = (13, 8, 5) or (3, 8, 11). 

With these observations in mind, let us proceed to a more systematic study 
of the three-number game. 

THE THREE-NUMBER GAME 

In the study of the three-number game, we will use the convention that the 
first triple in any three-number sequence, S1 = (a, b9 o) is not an orphan and 
and that a ^ b ̂  o. However, by Property (3), a = b + c. Therefore, 

S± = (b + c9 b9 a). 
Each triple in the cycle of the three-number game is of the form (0, d9 d). 

Since the order of the elements in each triple is of no consequence, no dis-
tinction will be made between permutations of a given triple. 

Theorem 1: If S = (0, d9 d), d is the greatest common divisor (g.c.d.) of the 
elements of S1 (d + 0). 

Proof: Let d be the g.c.d. of the elements of S1 = (b + o9 b9 o). Let 

S* = (l/d)S1 = ((2> + c)/d9 b/d9 eld) = (b* + c*9 b*, d*). 

Then (b* 9 o*) = 1 and 
S* = (0*5 b* - c*9 b*)9 

where the g.c.d. of the elements of S% is also 1. By induction, the g.c.d. of 
the elements of S* is 1 for all m > 1. Therefore, if £* = (0, d*9 d*), d* = 1 
(since d* £ 0 by assumption) and Sk = (0, d9 d). 

THE LENGTH OF THE THREE-NUMBER GAME 

Let us consider an example of the three-number game: 

Si 

s? sH sh s5 

= 
= 
= 
= 
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(11 . 
(8 , 
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17, 
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3 , 

11, 

. 2 0 ) , 
, 3 ) , 
17) , 
14) , 
3) 

s, 
s7 SR 

s, 
5 i n 

= 
= 
= 
= 
= 

( 3 , 
(5 , 
( 2 , 
( 1 , 
( 1 . 

8, 
3 , 
1, 
2, 
1, 

5 ) , 
2 ) , 
3 ) , 
1 ) , 
0 ) . 

The number of appearances of c = 17 is three. The generalization of this obser-
vation is in Theorem 2. 

Theorem 2: If 5X = (b + os bs o) , where b = qc + v9 0 < v < o9 the number of 
appearances of c is q + 2 = [b/c] + 2, where [ ] is the greatest integer func-
tion. 

Proof: We have 
Si = ((<? + 1)0 + r> qo + r9 c), 
£2 = (qc + PS (? - 1)^ + r9 c), 

and, by simple induction, 
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Sq = (2c + r, c + r, c). 
Thus, 

Sq+i = (̂  + v> G> r)> Sq + 2 = (°> r> c - r), and Sq+3 = (r, c - r, \a - 2r|). 

All the elements of Sq+Z are less than o and, since the transformation T cannot 
make max(Sk+1) > max(Sk), the number of appearances of o is q + 2. 

Note that c is not the g.c.d. of the elements of 5X in Theorem 2 by the 
assumption that 0 < v < c. That case is dealt with in Theorem 3. 

Theorem 3: If S1 = (b + os b, c), where 2? = qc, then |̂ ,
11 = q = — (c ̂  0). 

Proof: S± = ((q + l)c, ̂ , c) and simple induction gives S^ = (2c, e, c) . 
Thus, Sq + 1 = (c, o, 0) and \S1\ = g. 

With these two results, we have Theorem 4, which gives the length of the 
three-number game and clarifies what is indeed occurring in the sequence. 

Theorem 4: if sl = (b + c, b, o), c + 0, then 

i*ii = £ it* 
i = l 

where the q^9 1 < i < k, are all the quotients in the Euclidean Algorithm for 
b and c. 

Proof: Let b = q±c + r±9 0 < r± < c. By Theorem 2, 

Let c = ̂ r
2P1 + P2, 0 < r2 < r1, and repeat this process in the style of the 

Euclidean Algorithm until- vk = 0. If 

fc-i 

^ = i 

then 

^ = (rfc-l + ^ - 2 ' rfc-2* ^ - l ) > 

where rk_2 = qkrk_1. By Theorem 3, we have the desired result. 

From Theorem 4, we see that the length of the three-number game is greater 
than or equal to the length of the corresponding Euclidean Algorithm (with 
equality if and only if all the quotients in the Euclidean Algorithm are ones, 
i.e., if and only if b = o). 

There is a special case of the three-number game where the length is very 
easy to calculate. This case is given in Theorem 5. 

Theorem 5: If S1 = (b + c, b, o) and d is the g.c.d. of the elements of S1 and 
b = d (mod o), then 

I c I - i> - d c 
1 1 1 c d 
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Proof: If b - kc = d5 Theorem 2 gives 

Sk+1 = (b - kc, b - (k - l)cs c) = (d + c5 c3 d). 
By Theorem 3, 

19 ! - -
Thus 3 

| 5 l | - fc + § = ̂ _ i + §. 
1 1 1 a c d 

REMARKS 

It is important to note that although all the theorems in this paper refer 
to Sl9 they can be applied to any suitable triple in a sequence by neglecting 
previous triples. 

The three-number game affords a method for finding the g.c.d. of two posi-
tive integers b and c [using S1 = (b + c, b9 c) and finding d]. By Theorem 4, 
the length of the algorithm is small(relative to the size of b and c) if b and 
c are Fibonacci numbers, while the length of the corresponding Euclidean Algo-
rithm is maximized. In this case, the three-number game takes one more step. 
In general, however, the three-number game is not a viable method for finding 
the g.c.d. For a computer that can only add or subtract, it might be useful. 

It is known that the length of the four-number game is nearly maximized if 
the initial entrants are Tribonacci numbers [9]. Can we define "(n- l)onacci" 
numbers that strongly influence the length of the n-number game? 
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