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INTRODUCTION

1. Let z(n) be the index of the first Fibonacci number divisible by the natu-
ral number #n. At this writing, there has not been found a prime p whose square
enters the Fibonacci sequence at the same index as does p. This does not occur
for p < 10° [2].

The problem is related to the following one. For what relatively prime p,
b, is it true that pz[bp_1 - 1?7 Apparently, this question was first asked by
Abel. Dickson [1] devotes a chapter to related results. For b = 2, the con-
forming p2 values are the well-known Wieferich squares, which enter in the solu-
tion of Fermat's Last Theorem. The only two Wieferich squares with p < 3 - 10°
are 10932 and 35112 [6, p. 229]. These phenomena are rare but, to a degree,
predictable. An investigation of this predictability sheds some light on the
Fibonacci phenomenon.

2.1 Notation. Define n|p® - 1 as meaning =n|b” - 1, and nfb? - 1 for y <=z
(i.e., b belongs to the exponent x, modulo 7).

2.2 The following are well known. For p prime, (b, p) = 1; if p“bq - 1, then
plb® - 1 if and only if B = k * a. Since plbp-l - 1 (Fermat), it follows that
alp - 1. For g prime, (b, g) = 1; if g|bY - 1, then pg[p**™*™ -1, The mul-
tiplicative properties are similar to those of the Euler ¢ function. Indeed,
p2|bP* = 1 as ¢(p?) = pd(p). However, here we have a deviation: p?[b?* - 1,
unless pznba - 1. (In terms of decimals of reciprocals of integers, the first
prime > 3, such that l/p2 has a period the same length as 1/p, i.e., p2|10p'1,
is 487. 1Its period is of length 486.) It can be shown that this deviation oc-
curs if and only ifvpz1bp'1 - 1. If such is the case, and imitating Shanks's
flair for coinage of such terms, we say p is a wieferich, modulo b.

2.3 Consider the solutions to ™! = 1 (mod pz). Gauss [3, art. 85] assures
us that there are p - 1 distinct solutions, x, between 1 and p? - 1.
For each b, 1 < b < p, there is a distinct k such that

(b + kp)?P™t = 1 (mod p?).

i

These provide the p - 1 solutions:

(B +kp)P =1 =P -1+ (p - 1)bP %kp (mod p?)

and y -
p-1 _ =L

(é——E;——l> - b 'k = 0 (mod p), yielding k = b(é——5~——l> (mod p).

If x is a solution, so too is p2 - x. x =1 is always a solution; there-

fore, (p - 3)/2 solutions are scattered fromx = 2 to x = (p2 - 1)/2. 1If ran-

domly distributed, the probability that a particular & = b is a solution is
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(® - 3)/(p?® - 3). Holding b fixed and letting p range, the expected number of
solutions encountered < P is Zg(p - 3)/(p2 -~ 3). Since the series is divergent
(Zpgml/p =1n lnx + ¢ + 0(l/log ) [5, Th. 50, p. 120]), but diverges slowly,
the relative scarcity of these wieferichs, modulo b, is not surprising.

THE MAIN THEOREMS

3.1 In [4], dinformation about the entry points of the Fibonacci sequence was
obtained by imbedding the sequence in a family of sequences with similar prop-
erties. Specifically, let {In} be a linear recursive sequence with #™® term
given by

(c + V)" - (¢ - V)"

for q # ¢? (mod 4)
2/q

Vq

yielding the sequences defined by
2¢T,, 1 + (g - ez)l"n_2

T, = _ g2
el +-g—7r—— r,_

2

with initial values 1, 2¢ or 1, ¢. For ¢ =1, q = 5, we have the Fibonacci se-
quence.

Let ¢ = (q/p) be the Legendre symbol.

With g # ¢®, ¢ 2 0, ¢ # 0 (mod p), we have p|Fp_e.

1f p|T,, then p|T, if and only if B = ka. Also, a|p - e, [4].
3.2 Theorem: Let p|ly. Then, p?|I, if and only if p?|Tp-e (paralleling the

result mentioned in §2.2). Proof is by means of Lemmas 3.2.1, 3.2.2, and 3.2.3
below.

3.2.1 Lemma: If pZHTa, then pzin if and only if x is a multiple of a. Con-
sider:

yke _ ko Yo - P k-1 (k-2)atg F&k-1)
Tpo = % = 5 ¢4 *+y U+ oo +V¥ *).

o3 W

i , and ¥" + ¥" and (V¥)" are integers, it follows that pleka.

Since p2

Suppose pzlfka+p, 0 < r<a, and that this is the smallest such index not
a multiple of a. Dividing [444+, by [y, we obtain

ko+r _ wko+r ko _ T ka _ r _gyr
y ¥ \P,,(w v )+Lyka<‘l’ ¥ )

R R R

or Teosp = VT + VT,
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From 3.1, ¢ # ¢® (mod p), so pf¥*® and, thus, p?|T,. But this contradicts the
hypothesis that o was the smallest such index.

3.2.2 Lemma: If p|T,, then p®|Tpy. Consider:

(T,)P = (Wa _ Wa>P'

Noting that R®"! is an integer,
p-1

p-1 b _ \P \ypo‘ T2 B —sa (D I:W(P-Zs)oc _‘\}7(?-23)&
BHIOP = Stk B D () = :

=

yhe — e

p? divides all terms but 7

= T'pa, so it must divide it also.

3.2. 3 Lemma: If p|T, but p%IT¢a, 1 < t < p, then, since p 2|Txtq (from 3.2.1)
and p [Tpa (from 3.2.2), it follows that t|p; but p is prime, so

p?|ty  or  p*|Tpa.

In the former case, pin+1, in the latter, since p* 1 is not a multiple of pa,
ZXTp+1 This establishes the result.

3.3 We next consider ¥, ¥ with ¢ = ¢; + £p and g = q, + {p, expand and reduce
ypEl _ gptl )

— (mod p©). The result is linear in & and . Thus, for given ¢, g,
yP*l _ JpEl )
———————— = 0 (mod p?), each £, 0 < £ < p, generates one ¢, 0 < g < p.

Fix ¢. Let g range from 1 to (p-1). One of these pairs (¢, ¢), that with
q= e? (mod p),will produce a sequence not containing an entry point for p [4].
The other p- 2 pairs will each generate a solution § = 0, £ = 6 yielding a se-
quence with ¥ associated with ¢ + Vg + Op such that z(p) = z(pz). When ¢ = 1,
q = 5, we have the Fibonacci sequence. If the solutions 0 are randomly dis-
tributed over O, 1, 2, ..., p - 1, the probability 6 = 0 is 1/p. The expected
number of such phenomena, p < P, is Z:Pl/p, whose series diverges (§2.3). On
the basis of random distribution, the phenomenon should occur before p > 10°
On the other hand, 1n 1n 10% is not yet 3, perhaps not too wide a miss?

REFERENCES

1. L. E. Dickson. History of the Theory of Numbers, Vol. I. New York: Chelsea
Publishing Company, 1952.

2. L. A. G. Dresel. Letter to the Editor. The Fibonacci Quarterly 15. no. 4
(1977):346.

3. C. F. Gauss. Disquisitiones Arithmeticae. New Haven: Yale Univ. Press,
1966.

4. J. J. Heed & L. Kelly "Entry Points of the Fibonacci Sequence and the
Euler ¢ Function. The Fibonacci Quarterly 16, no. 1 (1978):47.

5. H. Rademacher. Lectures on Elementary Number Theory. New York: Blaisdell
Publishing Company, 1964.

6. D. Shanks. Solved and Unsolved Problems in Number Theory, 2nd ed. New
York: Chelsea Publishing Company, 1978.

118 sos0e [May



