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1 . Put 

(x - [x] - h (x ^ integer), 
(^)> = A , . (1.1) 

10 Or = integer) . 
The Dedekind sum s(ft, k) is defined by 

•<*•» • „£„«*) ) • 
It is well known that s(ft, k) satisfies the reciprocity theorem 

s(h, K) -a(k, K) = - | + T 2 ( | H - 4 + I)' (1-3) 

where (ft, k) = 1. For references, see [1, Ch. 2]. 
In this note, we shall show that (1.3) implies the following result. 

Theorem 1 

Let ft, ft', k, kr denote positive integers. (a) The system 

"ftft' = 1 (mod k), ftft' = 1 (mod k') 

kk' = 1 (mod ft), kk' E 1 (mod ft') 

has no solutions with ft ̂ ft', k ^ kr. (b) The solutions of 

fftft' = -1 (mod k), hhf = -1 (mod k') 

I kk' E 1 (mod ft), kk' E 1 (mod ft') 

(1.4) 

(1.5) 

with k ± kT satisfy 
kk' - hh1 = 1, (1.6) 

and conversely. 

The auxiliary inequalities in hypotheses (a) and (b) cannot be dispensed 
with. Thus, for example, (1.4) is satisfied by 

(ft, ft', k, k') = (2, 3, 5, 5) and (2, 4, 7, 7); 

(1.5) is satisfied by 

(ft, ft', k, k') = (3, 5, 4, 4) and (2, 3, 7, 7). 

Note that (3, 5, 4, 4) satisfies (1.6), but (2, 3, 7, 7) does not. 
The congruences (1.4) and (1.5) suggest that it may be of interest to con-

sider the following, more general, situation. 
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hh' E a (mod k) , hh' = 3 (mod fc') 

kk' = j (mod W , kk> E S (mod 7z'), 
(1.7) 

where each of a, 33 y* and 6 is equal to ±1. We find that the method used in 
proving Theorem 1 applies, provided a<5 = $Y and a = 3. Thus, there are just 
four cases to consider. The cases a = y = 1 and a = -1, y = 1 are covered by 
Theorem 1. The case a = 1, y = -1 is essentially the same as a = -1, y = 1. 
The one remaining case is covered by the following: 

Theorem 2 

The system of congruences 

'hh' = -1 (mod k), hh1 = -1 (mod kr) 

^kkr = -1 (mod 7z), kk' = -1 (mod h') 

has no solutions in positive integers h9 hr, k9 kr. 

Note that it is now not necessary to assume either k' ^ k or hr ^ h. 

2. It follows from (1.1) that 

(1.8) 

((-*)) = -((a?)). 
Thus, 

s(-h9 k) = -s(h9 k). 
In the next place, if hh' E 1 (mod k), then, by (1.2), 

•"••»-£K(imm-KsM)M))-
on replacing r by ht and using the periodicity of ((a;)). Hence, 

s(ft', fc) = s(h, k) [hh' s 1 (mod k)]. 

(2.1) 

(2.2) 

Similarly, 
s(fc', k) = -s(fc, Zc) [TzTz' -1 (mod k)], 

(2.3) 

(2.4) 

Now let h, hr, fc, fc' be positive integers that satisfy the system of con-
gruences 

'hhf E 1 (mod k), hh1 = 1 (mod fc') 
(2.5) 

_Wc' = 1 (mod 7z), ^ f E 1 (mod ?zf). 
Thus, 

(h, k) = (fc, fe') = (hf, k) = {h\ kf) = 1. 
Therefore, we may apply the reciprocity theorem (1.3) to get the following set 
of equations: 

e<h, k)+s(k, h) = - ! + T2@ + 4 + !) 

sW, k)+s(k, h») = -k + HT + Wk+w) , , , , 
1 1 fin 1 k ' \ K^-'O) 

s(h, k>) +s(k'. h) = - 4 + T 2 ( f + F̂ + 1 ) 
[s(h', k>)+8<k',h') • -\ + Uw + FF + &) 
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In view of (2 .3 ) , we have 

e(h, k) + e(k, K) = - \ + ^ ( f + ^ + | ) 

e(h. k) + sik, h>) = -\ + UT+fk + £) 
(2.7) 

Multiplying the first and fourth equations in (2.6) by +1, the second and 
third by -1, and adding the resulting equations, we get 

\k hk h) \k hfk ft'/ \kT hk' h ) \k' hfkr ft'/ u' 

or better, 

hrkf(h2 + 1 + k2) -hk'(h'2 + 1 + k2) -h'k(h2 + 1 + k,2) + hk(h'2 + 1 + kr2) = 0. 

A little manipulation yields 

(ft' - h)(k' - fc)(l - ftft' - kk') = 0. (2.8) 

Now, assuming tha t ft' ^ ft and &' ^ fc, (2.8) reduces to 

ftft' + kk' = 1. (2.9) 

Since (2.9) obviously has no solutions in positive integers ft, ft', fc, &', 
we have proved the first half of Theorem 1. 

3. To prove the second part of the theorem, let ft, ft', k, kr be positive inte-
gers that satisfy the congruences 

"ftft' = -1 (modJc), ftft' = -1 (mod fc') 
(3.1) 

kk' E I (mod ft), fcfc' = 1 (mod ft') . 
Then 

(ft, k) = (ft, fc') = (ft', &) = (ft', k') = l, 
and exactly as above, we get the set of equations (2.6). However, we now use 
both (2.3) and (2.4). Thus, in place of (2.7), we get 

(3.2) 

s(ft, k) + *(*, ft) =-i + T2(J + 4 + !) 
-e(*. *>+*(*. ft') --j + ̂  + | ^ + f) 

e(h, *')+*(*, ft) --£ + ̂  + ̂  + ̂ ) 
[-s(ft, k') + s(k, ft') = - ^ + T2Vp- + jpj^r + p-) 

Multiply the first and second equations by +1, the third and fourth by -1, 
and add: 

\k hk h) \k h'k h'J \k' hk' ft ) \k' h'k' h'J ' 

h'k'(h2 + 1 + k2) + hh'(h'2 + 1 + k2)-hrk(h2 + I + k'2) - hk(h'2 + I + k'2) = 0. 

This reduces to 

(ft' + 7z)(fc' - k)(l + Mi' - kk') = 0. 
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Hence, assuming k! ^ k, we get 

kkr - hh> = 1. 
This completes the proof of the theorem. 

k. We now consider the system of congruences 

' hhr = a (mod &) , hh' = & (mod k!) 

kk1 = y (mod « , kkr = 6 (mod h') , 

where each of a, $, y, 6 is equal to ±1. Then, in place of (2.7), we get 

s(h, k) + s(k> h) 
as(hs k) + s(k, hr) 
s(h, kr) + ys(k9 h) 

Isihy kf) + Ss(k, hr)s 

(3.3) 

(4.1) 

(4.2) 

where, for brevity, we indicate only the left-hand sides. 
Now, multiply the first equation in (4.2) by 1, the second by B,3 the third 

by n, the fourth by £. To eliminate the left-hand side, g, n, £ must satisfy 

(4.3) 

(4.4) 

1 + a? = 0, 1 + yn = 0, ^ + 6̂  = 0, n + 3C = 0. 

This gives 
£ = -a, ri = -y* £ = a65 £ = 3y, 

so that a6 = 3Y* 5 = a3y- Hence, (4.3) becomes 

5 = -a, n = -y, £ = By 
It follows that (4.2) implies 

(* + M + h) ~ aVF + Ffc + FJ - Aw + W* + T) + *Aw + 7PkT+hT) = 0-
Simplifying, we get 

(h'k'-ahk' - yh'k + &yhk) - ahhf(hrkr - ahkf - a3y/zfk + ayhk) 
- ykkf(hfkr - $hkr-yh'k + ayhk) = 0. 

I f a = 3 , t h i s becomes 
(hr - ah)(k' - yk)(l - ahhF - ykkf) = 0, (4 .5 ) 

wh i l e (4 .1) r educes t o 

hhf = a (mod k) , hhf = a (mod fc') 
(4 .6) 

.kk' = y (mod ft), kkf = y (mod ft')-

The cases a = y = 1 and a = -1, y = 1 are covered by Thoerem 1. The case 
a = 1, y = -1 is essentially the same as a = -1, y = 1. Thus, the only case to 
consider is a = y = -1. In this case (4.5) is 

(h' + h)(k! + £0(1 + hhr + kkr) = 0. (4.7) 

Clearly, (4.7) cannot be satisfied in positive integers. It is now not neces-
sary to assume either kf £ k or hr £ h. 

This completes the proof of Theorem 2. 
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1. INTRODUCTION 

Recently, some articles [1], [3], and [4] of a geometrical nature relating 
Fibonacci numbers to circles, with an extension to conies, have appeared in this 
journal. Here, we offer another geometrical connection between Fibonacci-type 
numbers and circles (though this material bears no relation to the other arti-
cles) . In particular, it is shown how Fibonacci and Lucas numbers, and their 
generalization, are associated with sets of coaxal circles. 

Define the recurrence-generated sequence {Hn} for all values of n (integer) 
by 

H
n+2 = Hn+1 + Hn, H0 = lb, H± = a + b, (1.1) 

where a and b are arbitrary, but may be thought of as integers. 
Using [2], equation (6), we have, mutatis mutandis, the explicit Binet form 

for this generalized sequence 

' _ (a + /5£)an - (a - v5fr)gw 
tin s K L * ^ J 

where a = (1 + /5)/2 (> 0), 3 = (1 - /5)/2 (< 0) are the roots of x2 - x - 1 = 0 
(so that ct(3 = -1) . 

From (1.2) it follows that 

where 

and 

Hn = aEn + bLni (1 .3 ) 

Fn = (an - $n)//5 (1 .4 ) 

Ln = an + 3 n (1 .5 ) 
are the nth Fibonacci and nth Lucas numbers, respectively, occurring in (1.1), 
(1,2), and (1.3) when a = 1, b = 0 (for Fn) and a = 0, b = 1 (for Ln). 

Observe from (1.4) and (1.5) that 

^5Fn< Ln when n is even, (1.6) 
while 

yf5Fn> Ln when n is odd. (1.7) 

2. COAXAL CIRCLES FOR {Hn} 

Consider the point with Cartesian coordinates (x, 0) where x is given by 

x = [(a + /Eb)a2n + (a - V5b)cos(n - l)n]//5an (2.1) 
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