
SOME IDENTITIES ARISING FROM THE FIBONACCI NUMBERS 

OF CERTAIN GRAPHS 

GLENN HOPKINS and WILLIAM STATON 
University of Mississippi, University, MS 38677 

(Submitted December 1982) 

Tichy and Prodinger [5] have defined the Fibonacci number of a graph G to 
be the number of independent vertex sets J in G; recall that I is independent 
if no two of its vertices are adjacent. Following Tichy and Prodinger, we de-
note the Fibonacci number of G by F(G). If k is a nonnegative integer, we will 
denote the /c-element independent vertex sets in G by Fk (G) . It is clear that 
E Fk(G) = F(G). Kreweras [4] (see also [3]) has introduced the notion of the 
Fibonacci polynomial, 

k>oy K j 

We define the more general concept of the Fibonacci polynomial of a graph G9 
denoted FG (x). In case G is a path on n vertices, 

which closely resembles Kreweras1 polynomial. Before defining FG (x), we compute 
Fk(Pn) , Pn the path on n vertices, and Fk(Cn) , Cn the cycle on n vertices. 

Proposition 1 

(i) V p *> = !; 
(ii) F1(Pn) = n; 

(iii) Fk(Pn + 0 = Fk(PJ + ^-i(P»-i> for 1 < fe < [ ^ p 

(iv) M P J - C 1 - ^ 1 ) for 0 < * < [2-ti]. 
Proof: The first two statements are obvious. To verify (iii), consider 

those ^-element independent sets that contain the initial point of the path and 
those that do not. Finally, (iv) may be verified using (iii) and induction on 
n. • 

Proposition 1 provides a natural graph-theoretic interpretation of the 
well-known formula 

T.(n'k
k

 + l)=Fn+1, 
k>0X K ' 

the n + 1th Fibonacci number. The right side of the equality is the number of 
independent sets of a path with n vertices. The left side is the sum over all 
k of the number of k-element independent sets. The following proposition will 
enable us to give an analogous identity involving Lucas numbers, and a graph-
theoretic interpretation of that identity. 

• 
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Proposition 2 

(i) F0(Cn) = 1; 

(ii) F1(Gn) = n; 

(iii) Fk(Cn) = Fk(Pn_1) + Fk_1(Pn_3) for 1 < k < [|] and n > 3; 

<iv) f̂c(̂ ) = fC I I i *) for 1 < * < [f] and * > 3. 
Proof: Again, the first two statements are obvious. To verify (iii), fix 

a vertex x in Cn. Consider those ^-element independent sets that contain x and 
those that do not; use (iv) of Proposition 1. To verify (iv), we use (iii): 

Fk(Cn) = ̂ (Pn_x) + Fk_1(Pn_3) 

- C i V C " ; * : 1 ) 
n/n - k-— 1\ 

= k( k - i ) • ' 

We now use Proposition 2 to obtain an identity analogous to that following 
Proposition 1. Ln denotes the nth Lucas number. 

Proposition 3 

For- .3, l+JifjV).^ 
Proof: The right side is the number of independent sets in Cn (see [5]). 

The left side is the sum over k of the number of ^-element independent sub-
sets. m 

We now pause to establish some notation and state a definition. If G and H 
are graphs, we will denote by G * H the standard composition or lexicographic 
product (see [1]). That is, G • H is the graph constructed by replacing each 
vertex V of G by an isomorphic copy Hv of H9 and by joining each vertex of Hv 
to each vertex of Hw whenever V is adjacent to w in G. We define the Fibonacci 
polynomial of G9 FGs by FG(x) = F(£ • kx) for positive integers x. As usual, fc^ 
is the complete graph on x vertices. That FG is a polynomial follows from the 
next proposition. 

Proposition k 

Let G be a graph, and let Fk = Fk(G) for k > 0. Then î  (x) = ^ Fkxk. 
£>o 

Proof: To obtain a fe-element independent set in G 9 kx, one must first 
choose a ̂ -element independent set in G, and then choose one of the x vertices 
in each of the k chosen copies of kx* m 

The study of the Fibonacci polynomial of G thus reduced to the study of the 
coefficients F,{G). For example, the constant term of FG(x) is 1, the linear 

term is nx9 and the coefficient of x2 is f ?J - m9 where m is the number of edges 

of G. The degree of FG(x) is the independence number of G5 that is, the number 
of vertices in the largest independent set. 
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We obtain some combinatorial i d e n t i t i e s by expanding the Fibonacci polyno-
mials of paths and cycles . 

Theorem 5 

Let x be a positive integer, and let n be a nonnegative integer. Let £ be 
hil ± Vl + 4a0 . Then, 

Proof: We compute the Fibonacci polynomial of Pn in two ways. First, use 
Proposition 4 and Proposition 1 to get 

Z ( n ~ k
k
 + >*. 

As a second approach, we derive and solve a second-order linear recursion for 
an = F(Pn ° kx). Clearly, a0 = 1 and ax = re + 1. Divide the independent sets 
in Pn °  kx into those that contain a vertex in the last stalk and those that do 
not. There are xan_2 of the first type, and an_1 of the second type. Hence, 
an - an_1 + xan_2* This recursion has characteristic equation X2 - A - x = 0. 
Solving this equation, subject to the initial conditions, yields 

a„ - F(Pn °kx) = 2l
l_ Ian + 2 - (1 - D n + 2 ) . m 

Note that the identity in Theorem 5 is true for infinitely many values of 
x. Hence, it is in fact true for all complex numbers x. The same remark ap-
plies to the following theorem. 

Theorem 6 

Let x be a positive integer, and let n be a nonnegative integer. Let £ be 
h(l ± Vl + te). Then, 

i + E ^ ( n ~k
k_ i x ) ^ = ^ + (i - « n -

Proof: We compute the Fibonacci polynomial of Cn in two ways. First, we 
use Propositions 2 and 4 to get 

Now we use Theorem 5. Let £ be a fixed stalk in Cn °  fcx. Divide the indepen-
dent sets in Cn °  &x into those that contain a vertex in 5 and those that do 
not. There are 

"ferVrK"1" (1 " zr'1} 
independent sets of the first type and 

2l
l_ xan+1 - (i - Dn+1) 

of the second type. Adding, and substituting x = £2 - I yields the theorem, m 

The identity of Theorem 5 is known. See, for example, [2, p. 76]. But our 
approach seems to provide a new interpretation for this identity. We believe 
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that new identities may be obtained by expanding Fibonacci polynomials of 
graphs. 
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