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I. INTRODUCTION 

Recently we have been making studies [1, 2] on the Fibonacci number system 
that appears to be of considerable importance to the Fibonacci computer [3], A 
specific result that appears to be of particular interest is that through mul-
tilevel coefficients on a Fibonacci radix system, efficient extension of repre-
sentations can occur. For example, through a ternary coefficient system, a 
doubling of the range with half the number of digits over a binary system has 
been shown, while in fact allowing a restriction to only even-subscripted Fibo-
nacci numbers in the radix [1]. Consequently, further investigation of various 
other properties and extensions has seemed warranted. This has led us to our 
present studies which indicate that the Fibonacci computer may have added fea-
tures, over those of redundancy for error detection and correction already re-
ported [4]. One such added feature lies in efficient processing techniques 
with these being based upon the conversion of numbers into special forms, in-
cluding even- and odd-subscripted Fibonacci radix systems. With this in mind, 
we develop in this paper several new Fibonacci number representations, in par-
ticular even- and odd-subscripted ones, a signed ternary one, and conversions 
between them. These ideas are developed in Sections II and III. In particular, 
we give the details of conversions among the various ternary Fibonacci radix 
representations. 

For reference purposes, we recall the defining recursion relation of the 
Fibonacci numbers [5] 

Fi = Fi-i + Fi-2> Fo = 0, F1 = 1. (l.D 

At times we will use this expressed in the alternate form F^ = Fi+1- Fi_1. If 
M - Fm+2 - 2, then any nonnegative integer N, 0 ̂  N ̂  M, can be expanded in a 
Fibonacci representation using (77? - 1) binary coefficients on the Fibonacci 
numbers as a complete base or radix set. Previously, we have shown how these 
expansions can be made in terms of some ternary and quaternary coefficient sets 
[1]; we will extend these latter expansions here as needed for conversions and 
arithmetic operations. 

II. BINARY TO MULTILEVEL CONVERSIONS 

Let an Unsigned Binary Fibonacci Representation, UBFR, be 

m 

E = E H"' h = {0> 1} (2-1} 
in the range (0, M) , where 

m 
M = E ^ = Fm+2 - 2. 

j-2 J 

Such a representation can be derived for a given number N using the conversion 
algorithm previously presented [2], 
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An Unsigned Quaternary F ibonacc i R e p r e s e n t a t i o n us ing only e v e n - s u b s c r i p t e d 
F ibonacc i numbers, UQFRe, i s d e r i v e d by t h e fo l lowing formula [ 1 ] : 

?? i = h2i-i + b2i - bz. + 1 ( 2 .2 ) 
where 

q\l E { -1 , 0, 1, 2 } , i = 1, 2, . . . , k, 
and 

m k 

N- E bjFj - Zq'2iF2.. (2.3) 
J = 2 i = 1 

The even-subscripted coefficients q\^ take four possible values according to 
the conversion Table 2.1. As is known, see [1], several Unsigned Ternary Fibo-
nacci Representations, UTFR, exist. Two of these that use only even-subscripted 
Fibonacci numbers, called UTFRe{-l, 0, 1} and UTFRe{0, 1, 2} may be derived from 
Table 2.1 by applying (1.1) on a UBFR, and thus eliminating either case 6 or 
case 1 by a prior conversion of the UBFR into the "minimum," UBFR(min), or the 
"maximum," UBFR(max), form respectively [6], Of these two ternary representa-
tions, the one derived from the UBFR(min) is of particular interest because it 
allows positive-to-negative number conversion by a simple form of complementa-
tion, namely -1 -*-»• 1 and 0 -<-> 0. In this Signed Ternary Fibonacci Representa-
tion, STFRe{-l,0, 1}, the sign of the number is determined by the sign of the 
most significant nonzero coefficient [5, p. 56]. In the above, we note that 
the binary representation of (2.1) holds only for nonnegative numbers; hence, 
we have called it "unsigned," as well as those representations coming from it 
by the quaternary transformation (2.2). However, upon making the complementa-
tion just mentioned within a UTFR {-1, 0, l}, negative numbers are contained 
within the system, which we consequently have called "signed" specifically to 
point out its broader nature. 

TABLE 2.1 

Binary-to-Quaternary Coefficient Conversion 

Case 

0 
1 

2 
3 
4 
5 
6 

7 

^ 2 i - l ^ 2 i ^2-i + l 

0 0 0 
0 0 1 

0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 

L ' • 

Qli = ^ 2 i - l + h2i ~ ^ 2 i + l 

0 
- 1 

1 
0 
1 
0 
2 

1 

Thus, the UBFR(min)-to-STFRe{-1, 0, 1} conversion is simply effected by 

*2i - b 2 i . 1 + b 2 i -b2i+1 ( 2 . 4 ) 
i n t h e r e l a t i o n 

m k 

N~ ZbdFj = Ete
2iF2i, (2.5) 

3=2 i-1 
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where k = [ (?7? + 1) /2] is the integer portion of {m+l)/2. The range now becomes 
{-My M) , where M = Fm+2 - 2 = F2k + 2 - 2 when m is even. 

The complete odd-subscripted Fibonacci representations may also be derived 
easily from a UBFR, in a manner analogous to the one discussed above for even 
subscripts. Indeed, a UBFR-to-UQFR0{-l, 0, 1, 2}, as also the UBFR(min)-to-
UTFR0{-1, 0, 1} and UBFR(max)-to-UTFR0{0, 1, 2} conversions, are all effected 
simply by almost identical conversion formulas [subtract "one" from all i, sub-
scripts in relations (2.2) through (2.5)]. Again notice that the complementa-
tion operation -1 -«->• 1 and 0 «-»• 0 allows for the positive-negative conversion, 
and thus provides the STFR0{-1, 0, 1}. 

II!. TERNARY CONVERSIONS AND ADDITION 

In this section, we will discuss techniques for conversion between several 
ternary representations, the ones of interest being the full-, STFRf{-l,0, 1}, 

the even-, STFRe{-l,0, 1}, 

and the odd-, STFRo{-l,0, 1}, 

N = E */*v (3- l a> 
J = i 

N = E ^2iF2i (3.1b) 
i = 1 

N = E ^i-i^i-i (3.1c) 
i = 1 

subscripted representations. In all cases, the coefficients t^, t i t t^ are in 
the set {-1, 0, 1}. 

Before discussion of the actual conversions, we show their use in terms of 
addition. 

A. Ternary Add i tion 

Addition becomes a very simple matter if we assume the availability of num-
bers in the full-, even-, and odd-subscripted ternary representations of (3.1). 
Thus, let two numbers N1 and N2 be given, one in the even- and the other in the 
odd-subscripted form: 

k k 
Ni = E te2iF2i and N2 = £ t^-i^i-i; 

then their sum has the full representation with 

t% j = even, 
t3 = \ o ° "2) 

t° , j = odd. 
That is, addition (and with it subtraction, because of readily executable com-
plementation) occurs through the interleaving of the digits of the numbers be-
ing summed. The process, as illustrated in Figure 1, is especially convenient 
for hardware implementations. 

B. Full- to Even-/Odd-Subscript Conversion 

As seen by the addition technique just discussed, it is convenient to be 
able to convert numbers from a full-subscripted form to a form using only even 
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Even Converter 

¥ 

Pi 
I 

p2 

I 

p3 

k 

k 
Nl = E KiF2i 

T 

p, 

N2 -

^ = 1 

T 

^ 5 ^6 
A 

k 
- T t°. F . 

£-* 2 ^ - 1 2^ - 1 ^ = 1 

F 2 f e - 1 
A 

T 

F2k ~N± + N2 

Odd Converter 

FIGURE 1. Ternary Addition 

subscripts as well as to one using only odd subscripts. As the principles are 
identical for obtaining the odd-subscripted form, we will concentrate here on 
obtaining the even one. 

Thus3 let there be given a full-subscripted ternary representation. By 
substituting for odd-subscripted Fibonacci numbers 

x 2i- 1 "- 2z li- 2 
and writing k = [(n+l)/2] for the integer part of (n+l)/2, we obtain: 

(*) 

N = E tdFd = E t2iF2i + E tii-iVu - F2i-2) (3 .3a ) 
j = 1 i = 1 £ = 1 

= E(*2i-1 + t2i ~ *2i+l)^2i- <3'3b) 
£ = 1 

Here we again assume £j = 0 for j < 1 and j > n. Thus, the coefficients 

* 2 * = *2*-l + t2i ~ t2i+l (3-3c) 

are those of an even-subscripted representation. However, if (3.3c) were to be 
applied directly to an arbitrary full-subscripted representation, it would lead 
to an even-subscripted representation with coefficients in the range of inte-
gers {±3, ±2, ±1, 0}, i.e., a septenary rather than a ternary one. Table 3.1 
shows these 33 = 27 possibilities, where the fourth column gives the result of 
applying (3.3c) directly. As is seen in Table 3.1, there are eight possible 
out-of-code (i.e., nonternary) cases. In each out-of-code case, though, a pre-
liminary preparation will bring the relevant coefficient back into code, the 
necessary preparation transformations being given in the final column of Table 
3.1. That is, by making an appropriate substitution via a Fibonacci number 
identity in the original full-subscripted representation, an out-of-code con-
verted coefficient can be brought back into code. Since some of the prepara-
tion transformations affect neighboring coefficients which could be brought 
out-of-code after transformation, it is necessary to continue the preparation 
until all coefficients become ternary when (3.3c) is finally applied. Since 
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TABLE 3.1 
Fu l l - to Even-Subscripted Conversion* 

c* •1 + * 2 i * 2 i + l > 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 

21 
22 

23 

24 

25 

26 
27 

* 2 i - l 

0 
1 

- 1 
0 
0 
0 
0 
1 

- 1 
1 

- 1 
0 
0 
1 
1 
1 

- 1 
- 1 
- 1 

1 

- 1 
1 

-1 

0 

0 
1 

- 1 

* 2 i 

0 
0 
0 
1 

- 1 
0 
0 

- 1 
1 
0 
0 
1 

- 1 
1 

- 1 
- 1 

1 
- 1 

1 

1 

- 1 

0 

0 

1 
- 1 

1 

- 1 

t2i+l 

0 
0 
0 
0 
0 
1 

-1 
0 
0 
1 

- 1 
1 

- 1 
1 
1 

- 1 
1 

-1 
-1 

0 

0 

- 1 

1 

- 1 
1 

- 1 

1 

* 2 < 

0 

- 1 

-1 
- 1 

0 
0 
0 
0 
0 
0 

- 1 i 

- 1 

2 

-2 

2 

-2 

1 2 

-2 
3 

- 3 

Revert 
to 

Case 

6 

7 

5 

4 

3 
2 
1 

1 

By 

Preliminary Preparation 
Transformations 

*2i-l + ^ 2 £ = ^ 2 i + l 

2 t - 1 2^ 2 i + l 
F • - F . = -F . 
L 2 ^ - 1 r 2 i + l r 2 i 

~F2i-\ + F 2 i + 1 = F 2 ^ 

F2i ~ F2i+1 = ~ F 2 i - 1 

F . + F = F . 
2^ x 2 i + 1 ^ i - l 

F . + F . - F = 0 
£ 2z-l ^ r 2i r 2 i + l U 

-F . - F . + F . = 0 
2i-l 2i 2i+l 

For a full- to odd-subscripted conversion, all subscripts are shifted 
down by one in the table entries. 

each preparatory transformation reduces by at least one the number of nonzero 
ternary coefficients in the full-subscripted representation being converted, 
successive applications of the preparatory transformations eventually will lead 
to a termination with only ternary £2fc calculated according to (3.3c). It 
should be noted that preparatory transformations can be applied simultaneously 
to nonoverlapping strings of three consecutive coefficients, but that simul-
taneous application to overlapping strings should be avoided. 

As an example, consider (see Table 3.1 for case numbers): 

N = _3 = (Fi _ Fs) + Fh _ (Fs _ F?) + FQ 

= -F2 + F, + F 6 + (FQ - F 9 ) , 

F9, cases 22 & 23 (3.4a) 

case 24 (3.4b) 
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= -F2 + Fh + (F6 - F 7 ) , case 24 (3.4c) 

= ~FZ + (i\ - F5), case 24 (3.4d) 

= ~F2 ~ Fs (3.4e) 

= -i^, by Eq. (1.1) (3.4f) 

The ripple effect of the preparatory transformations is well-exhibited by this 
example. 

It should be noted that none of the ternary representations of (3.1) need 
be unique, for example: 

N = 4 = F2 - F3 + F5 = F2 + Fh = -Fh + Fs = -F1 + F5 = Z^ - F3 + F5. (3.5) 

Conversion from full- to odd-subscripted representations uses identical 
techniques, the only difference being that one is subtracted from the indices 
in (3.3c). 

C. Even-/Odd-Subscript Conversion 

The conversion of an odd- to an even-subscripted representation, or vice 
versa, is really a special case of the full- to even-subscripted, or odd-sub-
scripted conversion. Thus, Table 3.1 applies. However, since the t2k = 0 in 
the present case of Table 3.1, only 32 = 9 of the cases occur with only two of 
these requiring preliminary preparation. This is illustrated in Table 3.2, 
where, also, in columns 2 and 6 we give the possible range of adjacent coeffi-
cients. In the two cases requiring preliminary preparation, we can actually 
carry out the adjustment after application of the conversion formula (3.3c) by 
using 3F. = F^_ 2+ Fi+2 [5, p. 59] for the replacement 

2F. = 3Fi - F• = Ft_2 - Fi + Fi+2. (3.6) 

It is seen in the three right-hand columns of Table 3.2 that adjacent coeffi-
cients are brought back into code. However, if two adjacent coefficients would 
become out-of-code by application of (3.3c), then (3.6) should only be applied 
to one of them so that the correction will remain in code. An example will 
illustrate this technique: 

N = -24 = F, - F5 + F7 - Fq, given (3.7a) 
by (*) 

(3.7b) 
F8 + F10) - F10, by (3.6) (3.7c) 

(3.7d) 

This last also results from one preliminary transformation on the given repre-
sentation using Table 3.1. 

In the case of even- to odd-subscripted conversions, or vice versa, it is 
seen that the "ripples" associated with the preliminary preparations can be 
avoided by one cycle of application of (3.6) after the use of (3.3c). 

IV. Discussion 

-24 

-?2 

-?2 

-F, 

= 
+ 
+ 
-

F3 -
2F, 

(F 2 

*v 

• ^5 + 

" 2F6 

?7 ~ 
+ 2Fi 

" * \ + *"6> 

F, 

) 
" 

5 

' F 1 0 » 

2FG + (**, 

Conversion between several Fibonacci number representations has been dis-
cussed here with special emphasis upon those representations which appear most 
useful for multivalued logic realizations of the Fibonacci computers. Of spe-
cial interest along this line is the addition technique that is seen, via Fig-
ure l,tobe a simple matter of register loading when even- and odd-subscripted 
ternary representations are on hand. Besides this rather considerable advan-
tage of the ternary Fibonacci representations, it is clear that they also 
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TABLE 3.2 

Odd to Even Conversion Table 
(for Even to Odd, interchange te and t°) 

Cases 

1 

2 

3 

4 

5 

6 

7 

8 

9 

t°.~-— 

u 2 l - 2 

(°) 

u (°) 

u (°) 
1 

U) 
( - 1 ) 

1:1 
(-1) 

1:1 M 
1:1 
(~2) 
r1^ l o ) 
( - 2 ) 

hi 
("2) 

hh 

- 1 

- 1 

-1 

0 

0 

0 

1 

1 

1 

— *u-
u2v- 1 

0 

- 1 

-2 

1 

0 

- 1 

2 

1 

0 

L2i + I V 

L2i + 1 L2i+2 

- 1 

0 

1 

- 1 

0 

1 

- 1 

0 

1 

(~2) 

M 
(- 1 ) 

{?} 
(°) 

1 

bj 
(-2) 

hi 
f-1) 
{?} 
(°) 
til 
I"2) 
f1^ (o) 
( - 1 ) 

1?} 
(°) 

Jil 

Followed 

^ 2 ^ - 2 

(-M 
1 °f I i) 

( - 1 ) 
\ °\ I i 

by (3 .6 ) t o g i v e : 

^2i 

1 

-1 

^ 2 i + 2 

HI 
1 °[ I i) 

( - 1 ) 
\ °\ \ i 

conveniently allow numbers and their negatives to be represented without use of 
negative subscripts. The negative of a number is easily formed by the inver-
sion of each coefficient in any ternary representation, also an advantage for 
hardware implementations using three-state devices or two-bits per cell binary 
equivalents [7], Ternary Fibonacci representations also allow the sign of a 
number to be determined conveniently by observation of the most significant bit 
as mentioned in Section II. 

The "ripples" that occur in the preliminary preparation transformations of 
Table 3.1 should be investigated for minimization and hardware implementation, 
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as well as for interfacing the Fibonacci processor with conventional binary 
processors and trade-offs between the two kinds of processors. 
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