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The purpose of this note is to give an alternative, shorter proof of a re-
sult of R. P. Backstrom concerning the sums of series whose terms are recipro-
cals of Fibonacci numbers, a problem on which much interest has recently been

focused.

Furthermore, the method used here gives the possibility of obtaining new

formulas related to the Fibonacci and Lucas numbers.
In fact, we establish in explicit form series of the form
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for certain values of a, b, ¢, and d.
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for an odd integer r, and
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if we successively replace k by k, k+r, ..., k+Nr, and sum the obtained equa-
tiomns.
Therefore,
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Using the relations
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it follows that (for odd integer r)
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Comparing (5) and (6) by letting k be even, kK = 25 in (6), and k be odd,
k =2t - 1 in (5), we see that if » is odd, then
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Similarly, with k¥ = 2s - 1 in (6) and k 2t in (5), we have, for r odd, that
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Letting ¥ -+ © in (6), we have, for odd r, that
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Comparing (5a) and (6a) as above, we see that if k = 25 - 1 in (6a) and k = 2¢
in (5a), then for r odd,
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while k¥ = 2s in (6a) and k = 2¢ - 1 in (5a) yields
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We note that, from (1), it follows that
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Similarly, for the Lucas numbers, starting from
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we find that
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with -r € 2k € » - 2 and r an even integer.
Following the methods used above, we obtain, for » even,
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Summing the last equation over the » - 1 values of k, leads to
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Comparing (7a) and (8a) as we did (5a) and (6a), we have, for » even, r =

in (8a) and k = 2¢ in (7a), that
G(r, 2s - 1) = -G(r, 2%)
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while, for » even, X = 2s in (8a) and k = 2¢ -~ 1 in (7a), we have
G(r, 28) = -G(r, 2t - 1).

By similar methods, the relations (1) and (4) can also be used to show that
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