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1. INTRODUCTION 

Following some of the techniques in [1] and [2], Walton [8] and [9] dis-
cussed several properties of the polynomial sequence {An(x)} defined by the 
second-order recurrence relation 

An+2(x) = 2xAn+1(x) + An(x), AQ(x) = q9 A±(x) = p. (1.1) 

The first few terms of {An(x)} are: 

(A0(x) = q, A±(x) = p, A2(x) = 2px + q, A3(x) = 4p#2+ 2qx + p, 

\A^(X) = 8px3 + bqx2 + kpx + q, A5(x) = I6pxh + 8qx3 + I2px2 + bqx+p, (1.2) 

Using standard techniques, we easily obtain the Binet form 

K{x) m (p - qw - (P - qm\ (1-3) 

where 

are the roots of 

so that 

= x • + V x ^ + 1 
(1.4) 

= x - v^2 + 1 

tz - 2xt - 1 = 0 (1.5) 

a + 3 = 2 x 5 a - 3 = 2/x2 + 1, a3 = -1. (1.6) 

In this paper we relate part of the work in [8] and [9] to other well-known 
polynomials. Thus, only some basic features of {An(x)} will be examined. 

It should be noted in passing that the expression for {An(x)} in (1.3) is 
in agreement with the form for the nth term of more general sequences of poly-
nomials considered in [6]. Properties of the general sequence of numbers {Wn} 
given in [4] are also readily generalized to yield properties of {An(x)}. 

Note that when x = 1/2 in (1.1) we obtain the generalized Fibonacci number 
sequence {Hn} whose basic properties are described in [3]. Furthermore, if we 
also let p = 1, q = 0 in (1.1) , then we derive the sequence {Fn} of Fibonacci 
numbers. Letting p = 1, q = 2 in (1.1) with x = 1/2, we obtain the sequence 
\Ln} of Lucas numbers. 

For unspecified x9 the Pell polynomials Pn(x) occur when p = 1 and q = 0 in 
(1.1), while for p = 2x and q = 2 the Pell-Lucas polynomials Qn(x) arise. Re-
lationships among Pn(x) and Qn{x) are developed in [5]. Hence, polynomials of 
the sequence {An(x)} may be called generalized Pell polynomials. 
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Readers may find some interest in specializing the results for {An(x)} to 
the polynomial sequences {Pn(x)} and {Qn(x)}9 and to the number sequences {#„}, 
{Fn}, and {Ln}. Some of the specialized formulas for {En} are, in fact, sup-
plied in [8] and [9]. 

Though it is not strictly pertinent to this article, we wish to record an 
important formula for {An(x)j which was not included in [9], namely, Sims on' s 
formula-. 

An^ ~ An + l(X^An-l(^ = H ) " (^ ~ P" + ^P*) . (1-7) 

2. An(x) AND CHEBYSHEV POLYNOMIALS OF THE SECOND KIND 

In [8] and [9] it is shown that 

M * ) = vZ\n ' m)t2x)n-2m + (p - 2qx) t (n ' 1 " 777)(2^)-1"2- (2.1) 
m = 0 777 = 0 X ' 

with n > 1. Furthermore, from [5] and [7], we have, respectively, the Pell 
polynomials given by 

*„(*>= t (" ~ Z ~ 1)(2x)""2'"-1 (2.2) 
777= 0 

and the Chebyshev polynomials of the second kind given by 

U„(x) = xf(-l) m( W: W)(2x)"-2m. (2.3) 
777 = 0 \ III / 

L e t t i n g x be r e p l a c e d by ix i n ( 2 . 3 ) , we see t h a t 

[ n / 2 ] 

E f " w)(2^)n-2- = ( - i ) X ( ^ ) = Pn+1.(a;), (2.4) 
m= o \ m / 

so that (2.1) can be rewritten as 

An(x) = q(-i)nUn(ix) + (p - 2qx)(-i)n~1Un_i(ix) (2.5) 

= ^ n + i W + <P " 2 ^ ) P n W 

= pPn(a;) + ^ . . W , 

which is another form of (1.1), which could also have been obtained by using 
the generating functions for An(x) (given in [9]) and Pn{x) (given in [5]) or 
their respective Binet forms. 

3. HYPERBOLIC FUNCTIONS AND An{x) 

Elementary methods enable us to derive, when x = sinh w = (ew - e~v)/2, 

A2k(x) = {p sinh Ikw + q cosh(2/;: - l)w}/cosh w (3.1) 

and 
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A2k+1(%) = {p cosh(2fc + l)w + q sinh 2fcw}/cosh w. (3.2) 

To achieve these results, we use the Binet form (1.3) and 

a = ew
9 3 = -e~w, a - 3 = 2 cosh w = ew + e'w. 

If we now use formulas (6.1) and (6.2) of [5], then (3.1) and (3.2) become 
(2.5) for the cases n = 2k and n = 2k + 1, respectively. 

k. GEGENBAUER POLYNOMIALS AND An(x) 

The Gegenbauer polynomials C^ for k > --y, k ^ 09 are given in [7] by 

C*(X\ = _J_[y Vnm r(n " m + feVn " /72V2x)n"2m (4 n 
* W r(fc) m t V ' r( n - 7 n + l ) \ m ) K l X ) > ^'L) 

where T(x) is the Gamma function. With k - 1, we have 

c j w = i ; ( -D"( n : "V-kcy-2™ « y„(x>, (4.2) 
w - o \ m / 

so that by (2.5) we obtain 
4n(a?) = q(-i)nC*(ix) + (p - 2^)(-i)n"1^_1(ix). (4.3) 

5. DETERMINANTAL GENERATION OF i4n(a;) 

Let us define two functional determinants An_x(x) and 6n_1(x) of order n- 1 
as follows, where d^ • denotes the element in the ith row and j t h column: 

n t 
2p# + g £ = 1 , 2, ...,n - l 

d-L i+i = P "̂  = 1 » 2 > •• •» n " 2 A Ax):{ ' (5.1) 
n J^,t-i = -1 i = 2, 3, ..., n - 1 

d^j = 0 otherwise 

6n-1(#): as for An„1(x) except that diti + 1 = -p, di>i_1 = 1 . (5.2) 

Expansion along the first row then yields: 
A n - l ^ = (2P^ + ^)An-2(ir) + P^n-sM (5-3) 

• p{2^Pn-!(x) + Fn_2(x)} + qP^Gc) by (5.5) of [5] 

- pPn(x) + qPn^(x) by (1.1) of [5] 

- An(x) by (2.5). 

Similarly, 

6n-1(ar) - 4n(a;). (5.4) 
As mentioned at the end of §2, a generating function for An(x) is given in 

19]. 
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