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I 

Let the arbitrary real numbers a, b, c, and d be given. Construct two se-
quences { a j r = 0 and {3^}" = 0 f o r w n i c n 

,0 = a, QL1 = c, g0 = b, 3X = d 

•n + 2 = 3n + 1 + 3n, n > 0 (1) 

'»+2 = an + l + an> n > °  

Clearly, if we set a = b and c - d, then the sequences {ai}^ = 0 and {3^)^=0 
will coincide with each other and with the sequence {F^(a, d)}™= . The first 
ten terms of the sequences defined in (1) are: 

0 a b 
1 c d 
2 2? + d a + c 
3 a + c + d b + c + d 
4 a + b + 2c + d a + b + c + 2d 
5 a + 2b + 2c + 3d 2a + b + 3c + 2d 
6 3a + 2b + 4c + kd 2a + 32? + 4c + 4a7 

7 4a + 42? + 7c + 6d 4a + 42? + 6c + Id 
8 6a + 72? + 10c + lid 7a + 62? + lie + 10a7 

9 11a + 102? + 17c + 17d 10a + 112? + 17c + 17c? 
A careful examination of the corresponding terms in each column leads one 

immediately to 

Theorem 1.1 

(a) a 3 n + 30 = 33n + a0, n > 0 

(b) <*3n + i + 3X = 33n + 1 + al s n > 0 

(° ) a 3 n + 2 + a0 + ax = 3 3 n + 2 + 30 + 31? n > 0 

Proof of (a): The statement is obviously true if n = 0. Assume the state-
ment is true for some integer n ^ 1. Then 

a3n+3 + 30 = 03n+2 + 33n+l + S0 by (1) 
(continued) 
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= « 3 n + 1 + a3n + &3n+1 + 30 by (1) 

= a 3 n + 1 + 33n + 33n + 1 + ot0 by induction hypothesis 

= a3n + l +
 a3n + 2 + a 0 by (D 

= $3n+3 + a0 by C 1 )' 

Hence, the statement is true for all integers n > 0. Similar proofs can be 
given for parts (b) and (c). 

Adding the first n terms of each sequence {a^} and {3?;} yields a result 
similar to that obtained by adding the first n Fibonacci numbers. That is, 

Theorem 1.2. For all integers k ^ 0, we have: 

3k 3k 
(a) « 3 f c + 2 = E B i + Bx (d) $3k+2 = £ a . + «x 

^ = 0 ^ = 0 
3 k + 1 3Jc+1 

(b) a 3 , + 3 = £ a . + 3X (e) B3 , + 3 = £ Bf + a , 
i = 0 ^ = 0 
3k+2 3fc+ 2 

(c) a3 k + lf = E 6{ + ax (f) 33A: + 4 = £ o^ + 3X 
£ = 0 £ = 0 

Because t h e p roof s of each p a r t a r e ve ry s i m i l a r , we give only a proof of 
p a r t ( e ) . 

Proof of ( e ) : I f k = 0 t h e s t a t emen t i s obvious ly t r u e , s i n c e 

I 
£ &i + 04 = 30 + 3X + ax = a 2 + 04 = 63. 

i = 0 

Assume (e) i s t r u e for some i n t e g e r k ^ 1, t hen 
a3 f c + 5 + ot3k+lf by (1) 

_ + a3fc+lf by (1) 

3k + 1 
= 3 3 k + l f + Z 3 i + 04 + 3 3 k + 3 + 3 3 k + 2 by i n d u c t i o n h y p o t h e s i s 

* - 0 and (1) 
3k+4 

= E B { + 04 . 
i = 0 

Hence, (e) is true for all integers k ^ 0. 

Adding the first n terms with even or odd subscripts for each sequence {0^} 
and {3i)j we obtain more results which are similar to those obtained when one 
adds the first n terms of the Fibonacci sequence with even or odd subscripts, 
That is, 

Theorem 1.3. For all integers k ^ 0, we have: 

3k+ 2 3k+3 
(a) a6 7 c + 5 = L 3 2 i - a0 + 3X (c) a6k+7 = £ g2 / - 30 + 04 

i = 0 i = 0 
3k+3 3k+4 

(b) ot6 k + 6 = X 3 2 i „ ! + a0 (d) a6 f c + 8 = £ 3 2 ^ _ ! + 30 
i = 1 i = 1 
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3/c+ 4 

^ a6fc+9 = £ 6 2 i " 30 + 3X 
i = 0 

3fc+5 
( f ) a6fc+io = £ 6^ . ! + a0 + a, - 3X 

i = I 

3k+2 
(9) 3 6 f e + 5 = £ a 2 i - 30 + a , 

i = o 

3A:+3 

(h) 3 6 k + 6 = £ a 2 i _ x + 30 

i = 1 

3fc + 3 
( ' ) 3 6 / c + 7 = £ a 2 . - a0 + 3X 

^ = 0 

3£:+4 
( j ) e 6 k + 8 = £ a 2 i - i + ao 

i = 1 
3/c+4 

(k) 3 5 f e + 9 = £ a 2 i - a0 + 04 
i = 0 

3^+5 

( ] ) Befc+io = £ a 2 i - 1 + 30 - a , + 3X 
i = l 

Proof of (g): If k = 0 the statement is obviously true, since 

2 

£ a 2i - 30 + ax = aQ + a2 + a^ - 30 + 04 = 2a + £ + 3c + 2d = 35-
i = 0 

Assume (g) is true for some integer k ̂  1, then 

^6H11 = a6/c + 10 + a 6 k + 9 ^ C1) 

= a6/c+10 + ^6fc+9 + a 0 " ^0 b y T h e o r e m lA> P a r t (a) 

= a6fc+10 + a6fc+8 + a6fe+7 + a 0 " ^0 ^ ( ^ 

3/C+2 

= a6fc + 10 + a 6k + 8 + &6fc + 6 + £ a2i + ai + a 0 " 2 ^0 
i = 0 

by (1) and induction hypothesis 
3k + 3 

^6fe + 10 + ask + 8 + £ a2-z: + a i ~ ^0 by Theorem 1 . 1 , p a r t (a) 

3k+ 5 

= £ a 2 i + Otl ~ 3 0 -
i =0 

Hence, (g) is true for all integers k > 0. A similar proof can be given for 
each of the remaining eleven parts of the theorem. 

The following result is an interesting relationship which follows immedi-
ately from Theorems 1.1 and 1.2. Therefore, the proofs are omitted. 

Theorem 1.4. If k > 0, then 

3k 

(a) £ (a* - 3;) = a0 - 30 
i = o 
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3k+ 1 
(b) L (a, - 3,) = 32 - a2 

i = 0 

3£+ 2 
(c) L (a* - 3;) = 0. 

i= 0 
As one might suspect, there should be a relationship between the new se-

quence and the Fibonacci numbers. The next theorem establishes one of these 
relationships. 

Theorem 1.5. If n > 0, then 

an + z + 3n + 2 = Fn+1(a0 + 30) + Fn + 2(ai + 3X). 

Proof: The statement is obviously true if n = 0 and n = 1. Assume that the 
statement is true for all integers less than or equal to some n ^ 2. Then 

an + 3 + Sn + 3 = ^n + 2 + 3n + x + an + 2 + an + x by (1) 

= Fn + 1^0 + 30) + ^ + 2^1 + Pi) + M^0
 + &0> 

+ F „(a, + 3 ) by induction hypothesis n + 1 1 1 J Jr 

= Fn + 2^0 + Bo) + Fn+3^1 + Bl>-

Hence, the statement is true for all integers n > 0. 

At this point, one could continue to establish properties for the two 
sequences {a^} and {3^} which are similar to those of the Fibonacci sequence. 
However, we have chosen another route. 

11 
Express the members of the sequences {a^}^ = 0 and {3^}~ = 0> when n ^ 0, as 

follows: 

a„ = Via + Tib + Tic + T* d t 
(2) 

3n = 6*a + 6jfc + 6%c + 6*d 

In this way we obtain the eight sequences {r|}^=0, {6^}^,0, (J = 1,2,3,4). 
The purpose of this section is to show how these eight sequences are related to 
each other and to the Fibonacci numbers with the major intent of finding a di-
rect formula for calculating an and 3n for any n. 

Theorem 2.1 establishes a relationship between these eight sequences and 
the Fibonacci numbers. 

Theorem 2.1 

( a ) ^ + 6 j = Fn_l9 n > 0 (c) T3
n + 63

n = Fn, n>0 

(b) Tl + S2
n = Fn_lt n > 0 (d) T^ + 6^ = Fn, n > 0. 

Proof of (a): This is obviously true if n = 0 and 1, since 

rj + 6j = 1 + 0 = F_± and T\ + 6* = 0 + 0 = 0 = FQ. 

24 [Feb. 



A NEW PERSPECTIVE TO THE GENERALIZATION OF THE FIBONACCI SEQUENCE 

(g) 

(h) 

( i ) 

( j ) 

(k) 

r3 = 
3k 

r3 

3k+l 

r3 

3k+2 

1 3k 

r4 

3k+ l 

« « 
= 63 

3 k + l 

" 6 3 , + 2 

«5* 
" 6 3 * + 1 

+ 1 

- 1 

- 1 

Assume this is true for all integers less than or equal to some integer n ^ 2. 
Then 

rn + 1 + «n + 1 = ^ + ^- ! + r^ + r^_x = F n - 1 + F n . 2 = Fn, 
and (a) is true for all integers n > 0. Similarly, one can prove parts (b) , 
(c), and (d). 

The next step is to show how the above eight sequences are related to each 
other. 

Theorem 2.2. If k > 0, then 

^ r L - 6L + i . - -

^ r 3 , + l - 6 3 , + 1 

( = ) r 3 , + 2 = « 3 k + 2 - 1 

W r 3 , - « § k - 1 

^ r 3 , + l = 5 3 , + l 

(f) r2 = 52 + i (l) r1* = 6 " + i 
V ' i 3 J e + 2 U 3 k + 2 T * V ' 3 k + 2 U3fc+2 T L 

Proof of (j): It is obvious that (j) is true if fe = 0, since T^ = 6̂  = 0. 
Assume the statement is true for some integer k > 1. Then 

= r : , + i + r 3 , + Kk+i b y ( i ) 
= ^3fe+i + ^ 3 k + ^3k+i by i n d u c t i o n h y p o t h e s i s 

= r ^ + i + r : , + 2 - « 3 * + 3
 b y ^ 

and the statement is proved. The remaining parts are proved in a similar way. 

We now show 

Theorem 2.3* If n > 0, then 

(a) Tji + r2 = 6i + 62 (b) Tn3 + rj = 6* + 6* 

Proof of (a): This is obviously true if n = 0 and n = 1. Assume true for 
all integers less than or equal to some integer n ^ 2. Then 

r1 + r2 = s1 + s1 + 62 + 62 by (i) 
n + 1 n + 1 n n-1 n n-l y v y 

= T^ + T̂ 2 + r^_1 + T2_x by induction hypothesis 
= S1 n + 52 by (1) 

n+1 n+1 J K 

Similarly, one can prove part (b). 

Before stating and proving our main result for this section, we need the 
following three theorems. 
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Theorem l.k. If n > 0, then 

(e) r3 = r 

(f) r* = r 

(a) 

(b) 

(c) 

s1 = r2 

62 = T1 

S3 = Yk 

• n L n 

n+ 1 

4 
n+ 1 

(g ) &l = 6. 2 n+1 
(d) 5̂  = rn3 (h) 6i-6h 

^+1 

Proof of (a): The statement is trivially true for n = 0, 1, 2, so assume 
it is true for all integers less than or equal to n where n ^ 3. Then 

«n\l - ^ + r n -l ^ < « 

" «i-.l + 6n-2 + *S-2 + 5n-3 ^ <*> 
= T2

 n + T2
 o + T2 + r2 by induction hypothesis 

n-l n-2 n-2 n-3 y 

Two applications of (1) will complete the proof of part (a) of the theorem. 
The other parts are proved by similar arguments. 

From Theorems 2.1 and 2.4, we have the following. 

Theorem 2.5 

(̂  r* + r2 = &l + &l = V i <»>o> 

(b) r„3 + r* = 6* + ^ = F„ (« >. o) 

Finally, we have the following statement. 

Theorem 2.6. If n > 2, then 

n + 1 

1 <"> r 2 = r n
2 . i + r 2 . 2 + n - 3 [ f ] 

(c) r* = r2 + a[f] - « + I 

<<0 r* « r 3 . , + r*_2 + * - 3 [ * - t i - ] 
(e) rj = r:.x + r:_2 + 3 [ ^ 1 ] - « 
(f) r» - r; + „ - 3 [ i ± i ] 
Proof of (a): The statement is obviously true if n equals 2 or 3. Assume 

the statement true for all integers less than or equal to n ^ 4. Then 

pi = 5 1 + 5 1 = T2 + T2 by (1) and Theorem 2.4, part (a) 
n+ 1 n n-l n n-l 

= 62 + 62 , + 62 + 62 , by (1) 

n-l n-2 n-2 n-3 J x 

= r1 + T1 + T1 + r1 by Theorem 2.4, part (b) 
n-l n-2 n-2 n-3 

(continued) 
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= rn " 3 [J] + n - 1 + r ^ - 3 p - ^ ] + n - 2 by induction 
hypothesis 

5] - 'H1] 
3n + 3 

= r 1 + r 1 + in - 3 - 3 
rc n - 1 

= T^ + T1
 n + 2n - 3 + 3 

n n-1 

- r« + ^ - i + ^ H 1 ] - <» - i) + i 
and part (a) is proved. (It can be shown that [(n+ l)/3]+ [n/3] + [(n- l)/3] = 
n - 1, n ^ 1.) Similarly, one can prove parts (b) , (d), and (e). 

The proof of part (c) above follows directly from part (a) of Theorem 2.6, 
(1), and part (a) of Theorem 2.4. The proof of part (f) follows by a similar 
argument. 

Adding the equations of part (a) of both Theorems 2.5 and 2.6, we have, for 
n > 0, 

^ 2 " i ( F » + l " r n + * + ^ l + ^ + 3^V\ ~ * ~ 0 
-i(*»+i - rn+2 + C 2

+ tfrr1] ~n~l) by (1) 

= l ( F n + i + 3 [ n 3 2 ] " n " l) hy ( a > o f Theorem 2 . 4 

= 6 2 by ( a ) of Theorem 2 . 4 
n + 2 

S i m i l a r l y , we h a v e 

r2 . uF _ 3 r z L + 2 ] + n + A . 6 i 
n+2 2 \ » + l L 3 J J n + 2 

c 2 = K ^ + 2 - 3 [ f ] + " - i ) = 6-2 

Substiting these four equations into (2), we have our 

BASIC THEOREM. If n > 0, then 

+ (fn + 2 + - " 3 [ f ] " l)« + (^ + 2
 + 3 [f] + L " »)<*} 

= }{(a + fc)Fn + 1 + (c + d)Fn + 2 + ^ [^y^] - n - l)(a - W 

+ (M " 3 [ f ] " 2 ) ( c " d ) } ; 

+ ( f " « + 3 B ] + ' - " ) ° * (*•.•*+" - 3[f] - !)4 
( c o n t i n u e d ) 
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= i{(a + b)Fn + i + (c + d)Fn + 2 + (3p4-^] - n - l) (Z> - a) 

+ (n - 3[I]' - l W - c)l. 

Ill 
The sequences {o^}. and {3i}J=0 can also be expressed as follows [simi-

larly to (1)]: 

'ap = a, a1 = c, (3Q = b, B1. = d 

aM+9 = a +1 + a x ' (3) 
> (n ̂  0) 

'a0 = a, a2 = c, 30 = b, 61 = <f 

a n + 2 = 6n + 1 + an ) (4) 
^ V (n > 0) 

n + 2 = an + 1 + 3n J 

aQ = a, ax = c, 30 = fc, 3X = ̂  

a"« = a"+1 + 3" 1 (n > o) (5) 

X + 2 = en + 1 + «n ) 
The sequences (3) are actually two independent Fibonacci sequences of the 

form {Fi (a, c)}^=0 and {Fi{b9 d)}^=0. It is easily seen that the sequences (4) 
can be expressed through the sequences {F^(a, d)}"=0 and {F^(b, c)}i = Q, namely, 
a2n = F2n(a> & , d2n+1 = F2n+1^» C^ > § In = F'in 0> > o) > B 2 n + 1 = F (a > &) , Tl> I. 

In the case of (5), two sequences are introduced whose members are related 
similarly to those discussed in I and II. Therefore, we shall discuss them no 
further here. 

Numerous similar pairs of sequences can be constructed. However, the ones 
introduced here stand most closely to the very spirit of the Fibonacci sequence 
and its generalization rules. 

We are deeply thankful to the referee for his thorough discussion. 
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