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1 . INTRODUCTION 

A sequence of exponential numbers, say Pn , i s defined by i t s exponential 
generating function as 

^2>Pnxn/.n\ = exp{^(x)} 
n = 0 

for some (formal) power series g{x) with constant term zero. 
As regards Bell numbers [g(x) = ex - 1], Lunnon, Pleasants, and Stephens 

[6] showed that for each positive integer n, there exist integers a0, ax, ..., 
an_1 such that, for all m > 0, 

Pm + n + CLn_1Pm + n_1 + ••• + a0Pm E 0 (mod n!). 

In this paper, we show a similar congruence for the exponential numbers Pn 
when g(x) is a certain series function (Section 2). Special cases include num-
bers Pn equal to the number of permutations of n elements having cycles with 
given maximal and minimal size or equal to the sum of the horizontal entries of 
the table of Jordan [5, p. 223], also for Pn equal to the generalized derange-
ment numbers. 

2. THE CONGRUENCE 

Theorem. Suppose 

j = i J 

where the b- are integers. Let 

e9M=tPn£ (1) 
n = 0 n • 

and let 

jk y_e-9(y) = y D y_ ' (2) 
kl n = k ' k n l ' 

Then, for each m, n > 0, 
n 

£ Dn,kPm+k = 0 (mod nl) . 
k = o 

Proof: Let f(x) = e9M. Then 
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e-'Wf(x + y) = £ e-°M £f*\x) = £ ^ Ml £ DnikPm + k. 
k = 0 

Thus, it is sufficient to show that the coefficient of xm/ml in e~9^ f(x + y) 
is a power series in y with integer coefficients. 

Now we have 

e'gWf(x + y) = exp E 0<°(2/>7i 

Since gf(y) = EJ- = 0Z?J- + 1i/J, g^\y) is a power series in 2/ with integer coeffi-
cients, Hlcl=1g^(y)x'!'li\ is a Hurwitz series in # (in the sense that the coef-
ficient of xi /i! is a power series with integer coefficients). Thus, 

exp E g(i)wfr 
is also a Hurwitz series in x, which proves the theorem. 

Remarks: We have that g(x) is a Hurwitz series. Using the fact that 
[g(x)]k/kl is also a Hurwitz series for any nonnegative integer k, we define 
the integers A(n, k) by 

E4(n, k)xn/nl = [#(#)]*/&!. 

n = k 

Then, from ( 1 ) , we have 
n 

pn = E^o*> fc), P0 = 1. 
k = 0 

From (2), we have 

£D„ kynln\ = (yk/k\) £ (-1)* {g{y) Y l%\ 

= EM ) ' Ê (J. i)yd + k/kiji 
i = 0 3 = £ 

= E(-l>* E i«n - *, i)(^)i/n/n! 

n - k 

= E Z(2)(-l)*^(" " *. i)j/"/n!, 

and consequently, 
n-fc 

(3) 

(4) 

D».* = (fc) £ 0
 (~1)<il(" " fe' i}' 

For tabulation purposes, we may obtain a recurrence relation for the inte-
gers Dn , . Using (2), we have 

D(u, y) = E^.^V/*' " ̂ to) + uy. 
n,k 

(5) 
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By differentiating both sides of (5) with respect to y 9 we obtain 

f-D(u, y) =-e-9Wgf(y)euy + e'^e^u = D(u3 y){-gf(y) + u}. 

Equating coefficients of ukyn/nl, we obtain 

Dn+Uk = Dn3k_x- f (l)bn_i+l(n - i + DlDiik for n, k > 0, 

with D0) 0 = 1 and £„ £ = 0 for fe > n or K 0. 

It may be noted that f(x) = e9^ counts permutations in which a cycle of 
length j is weighted b•. 

3. SPECIAL CASES 

We shall now give some special cases of g(x) for which the numbers Pn are 
of great interest in Combinatorics. 

a. g{x) = 2 X°IJ where S is any set of positive integers. 
jes 

Then f(x) = eg^x* counts permutations with all cycle lengths in S. For S = 
{l, 2}5 g(x) = x + x /2, and the numbers 

Pn =
 tn = 2 ^ , fe) 

k= [n/2] 

have been studied by Moore [3], Moser and Wyman [7], and others. From [4], we 
have a congruence for tn which is a special case of our theorem. 

b- gix) 'fcu- D ! T = (1 +x) -£0 W - D'T* 
r, s integers, 1 < v < s. 

Then ^4(n, /c) have occurred as coefficients in the /c-fold convolution of 
binomial distributions truncated at the point v - 1 (see [1]). In the case in 
which r = 1, i4(n, /c) = (l/nl) [Ak(sx)n]x= Q (see [2])5 and the numbers 

n 

pn = E ^(n> &) 
fc- [n/s] 

occur in combinatorial analysis being in fact Pn is equal to the sum of the 
horizontal entries of the table of Jordan (see [5, p. 223]). 

c. g(x) = (s - l)x + s J] xJ'/j = -x - s log(l - x) , s an integer, s ^ 1. 
J = 2 

Then Pn is equal to the generalized derangement numbers d(n9 s) [for s = 1, 
we have the derangement number din)]. 
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