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INTRODUCTION 

Def in J tion 1: Let k be a given positive integer. Two integers a and 3 are said 
to have the property p (resp. p^) if a$ + k (resp. a$ - k) is a perfect 
square. A set of integers is said to be a Pk set if every pair of distinct 
elements in the set has the property p . A sequence of integers is said to be 
a PPj k sequence if every r consecutive terms of the sequence constitute a P, 
set. 

Given a positive integer k9 we can always find two integers a and (3 having 
the property p . Conversely, given two integers a and $> we can always find a 
positive integer k such that a and (3 have the property pk . If S is a given Pk 
set and j is a given integer, then by multiplying all the elements of S by j, 
we obtain a Pfej-2 set. Suppose we are given two numbers a1 < a2 with property 
p and we want to extend the set {a1> a2) such that the resulting set is also a 
Pk set. Toward this end, in this paper we construct a P3 k sequence {an}. 

ASSOCIATED P3>k SEQUENCES 

and 

and 

Suppose 

a±a2 + k = b\ 
let a3 E {ax, 

a-Lag + k = x2 

a2a3 + k = y2 

. } , a Pj, set. Then we have 

(1) 

(2) 

(3) 

for some integers x and y. Eliminating a3 from (2) and (3), we obtain 

X2 - a1a2I2 = ka2(a2 - a x), (4) 

where X = a2x, I = y* Using (1) in (4), we obtain 

X2 - Q)\ - k)Y2 = k(a2
2 - b\ + k). (5) 

One can check that X = a2{a1 + 2?x) , Y = a2 + &i, is always a solution of (5). 
When b2 - k is positive and square free, (5) has an infinite number of solu-
tions. Henceforth, we concentrate on the solution X = a2(a1 + b±) , Y = a2 + bx 
of (5). This gives 

a2a^ + ĉ = fr2, 

axa3 + fe ,2 

with 
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b2 = a2 + bl9 o1 = a1 + Z?l5 a3 = Z?2 + <?.,_. 

In what follows, we construct three sequences {an}, {&n}, and {en}, where als 
a2'a3' blsb29 and c?x are as above. We say that {2>n} and {on} are the sequences 
associated with {an}. Taking 

aq + b9, a2 + b2, ah = bo + c23 

we can see that 2(a3 + a2) - a± = ah. Using this fact, we obtain 

a2ak + k = c?2 and a^a^ + k = b\. 

For the construction of the sequences {an}, {Z?n}, and {an}, the following dia-
gram can be helpful. 

an 

*-£/-

Djag ram 1 

Explanation for the diagram: Write b± = y/a-ja2 + fc in the second row, in the 
space between ax and a2\ and write ^ = ^laxaz + fc in the third row, in the 
space beneath a2« Along the arrows shown by thick lines, sum the elements of 
of the first and second rows to obtain the elements of the third row. Along 
the curved arrows, sum the elements of the first and second rows to obtain the 
elements of the second row. Along the arrows shown by dotted lines, sum the 
elements of the second and third rows to obtain the elements of the first row. 
The preceding discussion shows that the scheme provided in the diagram is valid 
for al9 a2s ct3, ahi bls b29 b3i clf and o2. Let n > 2. Assuming the validity 
of Diagram 1 for al9 ..., an, b1, . . . , bn_1, and a±, . .. , on_2i it can be proved 
without much difficulty that 

2(an + an-i) - an-2 = % + D (6) 

and that the scheme is valid for a15 

Theorem 1. The three sequences {an}3 

?„, and e19 

{bn}, and {on} have the same recurrence 
relation. 

Proof: We have an+1 = 2(an + <zn-i) [see ( 6 ) ] . Now 

bn+1 = an+1 + bn = on_1 + 2bn = an_± + bn_x + 2bn 

= 2bn + 2>B_i + < V i " *»-2> = 2 ^ « + 6 » - i > " (7) 

and 

= an + 1 + bn + 1 = 2an + 1 + bn = 2(<?n_1 + 2>n) + bn 

= 2cn-i + bn + 2(<?n an) = 2(on + cn_i) + (an + Z?w_i) 2a„ 

(8) 

Hence, the theorem is proved. 
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We shall now obtain additional relations. First, using 

an + l ~ Cn + 1 ~ bn + 1 a n d CLn + 2 = Gn + Dn + 1 , 

we have 

a n + i a n + 2=Cn~T~Cn+l> 

tha t i s , 
an + l ~ Gn = ~ ( ^ n + 2 ~ c n + l ) - ( 9 ) 

Next , from 

bn = cn - an and bn = bn + 1 - an+1, 
we obtain 

2bn = (cn + bn+1) - an+1 - an9 

which yields 

2bn = an+2 - an+1 - an. (10) 

Next, 

a n + 2 " an + l + an = (&„+i + Cn) ~ (hn + l " K^ + a n 

= 2en. (11) 

From (10), we obtain 

an + 2 = an + l + an + ^anan + l + K, 

and from (6) we have 

an + 2 = ^ ' an + 1 ~*~ an ) ~ a
n - 1 ' 

Hence, 

an+l + an ~ an-\ ~ ^ a n a n + l + ^' 

which gives the relation 

a2 ., + a2 + a2 .. - 2a â„ - 2a na ,. - 2av,aVIJ, = 4fc. (12) 
n + 1 n n-1 w - 1 n n-1 n + 1 n n + 1 K J 

FIBONACCI RELATIONSHIPS 

Next we shall exhibit a relationship between either of the sequences {an}, 
{bn}, and {cn} and the Fibonacci sequence {Fn}. The Fibonacci sequence {Fn} is 
defined by 

F = F = l * F = F + F » 
1 2 * n + 2 ^n + l ' x n °  

V. E. Hoggatt, Jr., and G. E. Bergum [1] have shown that the even-subscripted 
Fibonacci numbers constitute a P3 1 sequence. We can set 

an-l = F 2 n ' a n = F2n+2> a n d a n +1 = F2n+4 
in (12) and obtain 

F 2 + F2 + P 2 - 2F F -IF F - IF F = 4 
2n 2n + 2 2n + 4 2n 2n + 2 2n + 2 2n + 4 2n 2rc + 4 

Theorem 2. Any sequence {an} satisfying (6) is given by 
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Proof: From (6), we get 

ah = 2(a3 + a2) - a± = -F1F2a1 + F1F3a2 + ̂ 3 a 3 , 

a5 = 2(ah + a3) - a2 = -2a1 + 3a2 + 6a3 = - ^ ^ + F2F1OL2 + ^ 3 ^ a 3 , 

a6 = 2(a5 + a4) - a3 = -6ax + 10a2 + 15a3 = - ^ 3 ^ a 1 + F3F 5a 2 + FIfF5a3. 

So the theorem is true for n = 4, 5, 6. Let n > 4 and assume that the theorem 
is true for all integers j up to n. Using (6) we have 

CLn + i = 2(-Fn-3Fn-2a1 + Fn-3Fn-1a2 + Fn_2Fn_ia3) 

+ 2{-Fn-hFn-3ai + Fn_ 4F n_ 2a 2 + F„_3Fn_2a3) 

- (-F n- sFn-k^i + Fn- 5Fn_ 3a2 + ̂ n - 4 ^ _ 3 a 3 ) ; 

that is, 

#n+i = (~2Fn-3Fn-Z ~ 2Fn-i±Fn- 3 + Fn-5Fn-h)a-t 

+ (2F„_3Fn_1. + 2Fn_hFn_2 ~ Fn_5Fn_3)a2 

+ (2F„_2Fn.1 + 2F„_3Fn_2 - Fn_,Fn_3)a3. (14) 

The coefficient of ax in (14) is given by 

-[2Fn_3(Fn_2 + F n _J - Fn-^Fn-s - Fn_h)] = -(2Fn_3Fn_2 + Fn_3Fn_4 + Fn
2_0 

= -(2Fn_ 3 F n _ 2 + Fn_4Fn_2) 

= -Fn_2(2Fn_3 + F n _ J 
= ~Fn-2(Fn-3 + Fn_2) „ 
= 'Fn-lFn-l-

Similarly, upon simplification, we have the coefficients of a2 and a3 in (14) 
equal to Fn_2Fn and Fn_1Fn, respectively. This proves Theorem 2. 

Remark 1. The relations (6), (7), and (8) imply that (13) remains true if the 
afs are replaced by b1s or by c's. 

Now we express b% s in terms of a19 a2, a3. We have 

2b2 = -ax + a2 + a3 . 

Using a4 = 2(a3 + a2) - a19 we obtain 

22? 3 = -a2 + a3 + ah = -ax + a2 + 3a3, 

2Z?4 = - a 2 + a 3 + 3a4 = - 3 a 1 + 5a2 + 7 a 3 . 

Suppose 22? n = - r n a 1 + sna2 + tna3. Then 
2 ^ n + l = ~rna2 + Sna3 + tn^k = ~^nal + 2 ( ^ n " ^n)a2 + ( 2 t n + Sn)a3. 

Hence, 2bn + 1 = -rn + 1a1 + sn + 1 a 2 + tn + 1 a 3 , where 

u 2 •*- t 3 s 4 ' 

sn+1 = 2tn - tn_1, 

tn+1 = 2{tn + tn_Y) - tn_2 (n > 4). (15) 
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Similarly, we have 2en+1 = -wM+1a1 + vn+1a2 + wn+1a3, where 

Un+l = Wn> 

Vn + 1 = 2Wn ~ K-l> 
Wn+1 = 2 K + Wn-l) " Wn-2 (* > 3) . (16) 

Thus, the sequences {an}s {&„}, {cn}, {tn}, and {wn} have the same recurrence 
relation. 

Next we consider the possibility for the coincidence of the sequences {an} 
and {cn}. In this regard, we have the following: 

Theorem 3* Let {an} be a P3)k sequence with the associated sequences {bn} and 
{en}. The following statements are equivalent: 

(i) an+1 = on for some integer n > 1 

(ii) #n + 1 = cn for all integers n 

(iii) aM+1 = bn + cn for all integers n 

(iv) cM + 1 = bn+1 + cn for all integers n 

(v) an + 1 = an + &n for all integers n 

(vi) ̂ n+2 = 3bn + 1 - £>„ for all integers n 

(vii) c
n + 2 ~ ^°n + i " cn f° r a H integers n 

(viil) an + 2 = 3an + 1 - an for all integers n 

(ix) fc = a^ + 1 - 3anan + 1 + a* for all integers n 

(x) -fc = b*+1 - 32?n2?n+1 + b„ for all integers n 

(xi) k = c^+1 - 3cncn+1 + <2* for all integers n 

(xii) an = -F2n-hai + F2n~2a2 f o r a 1 1 integers n 
and 

Z?n = -•??2n-3ai +
 F2n-ia2 f o r a 1 1 integers n > 3 

(xiii) Z?n is a P3)_k sequence with the associated sequences {an} and {bn} 
(where 6B6» + i - k = a* + 1 ). 

Proof: The following scheme may be adopted. 

(i) =» (ii) => (iii) => (iv) =» (v) => (vi) => (vii) => (viii) => (ii) => (i) , 

(v) =» (ix) ̂  (viii), (v) => (x) ̂  (vi) ; 

(ii) =» (xi) =» (vii) ; 

(ii) => (xii) =̂> (ii) and (x) => (xiii) =$> (x) . 

The proof itself is left to the reader. 

F-TYPE SEQUENCES 

D-ef-in i t ion 2: Let {an} be a P3,^ sequence together with associated sequences 
{bn} and {on}a We say that {an} is an F-type sequence if the sequence 
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{a19 b±, a2, b2, a3, b3> . . . } , 

obtained by juxtaposing the two sequences {an} and {bn}9 is of Fibonacci type, 
i.e., f1 = a19 f2 = b19 and fn = fn ^ + fn_2, n > 3. 

Theorem 4. A P3ik sequence {an} with the associated sequences {bn} and {on} 
for which any one of the equivalent statements in Theorem 3 holds is an F-type 
sequences. Conversely, given a Fibonacci-type sequence 

T = {g, h, g + h, g + 2h9 . . . } , 

where g and In are two positive integers with g < h> if {an} and {bn} are the 
sequences formed by taking the terms in the odd and even places, respectively, 
of T9 in the same order as they appear in T, there is an integer k such that 
{an} is an F-type P3 k sequence for which the equivalent statements in Theorem 
3 hold. 

Proof: (=>) Using cn-\ = an-i + bn-i, we obtain an = an-i+ bn-1 for n > 2. 
We have that bn = an.1 + bn_1 for n ^ 2. Hence, the sequence {al9 b , a2, 2? , 
..,} is of the Fibonacci type. 

(<=) We have 
ai = 9> b1 = h, 

an = ?2n-39 + F2n~2h> hn = ^ 2 n - l G + ^ 2 n - 1 ^ ( « > 2 > > ( 1 7 > 

where {Fn} is the Fibonacci sequence. One can check that 

&n +
 a

n+2 = 3an + i for all n > 1. (18) 

Now 

(a^ + 2 - 3an + 1an + 2 + a* + 1) - (a* + 1 - 3anan + 1 + a*) 

— \&n + 2 - CLn) - ~>(2n + 1((2n + 2 - CLn) 

= (an + 2 - an)(an + 2 + an - 3an + 1) = 0 for all n> 1. 

Hence, we have 
an + i ~ 3anan + i + an = an + 2 ~ 3an+ian+2 + an + i = constant, for all n. 

Let a2
 1 - 3anan + 1 + a2 = /c. In particular, putting n = 1, we get 

fc = h2 - gh - g2. (19) 

We have, using (19), 

*„*»+l + * " ^ 2 n - 3 f
2 n - l " ^ + ^ 2 » - 3^2» + F 2„ - 2F 2n - 1 ~ ^ 

I t can be seen t h a t F2n_%F2n - 1 = F2„ _2-F2« -1 • T h e r e f o r e , 

anan + 1 + k = F L - 2 ?
2 + 2F2n_2F2n_igh + F2

2n^h2 = b2. 
Next , 

a «» + k = ^F2n-SF2n-l ~ ^ ^ + ^F 2n - SF 2n + F2n - J' 2n - 1 " W 

After some calculation, we have 
+ &2nF2n-» + 1 ^ 2 ' 

a n a + k = F2 a2 + 2F0 F og/z + F 2
 o/z2 = al. 

n-l n 2n-3y 2n - 2 2n - 3y 2n - 2 n 

Consequently, the sequence {an} is an F-type P3j^ sequence with the associated 
c-sequence given by on = an+1 for all integers n ^ 1. 
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ASSOCIATED DSOPHANTINE EQUATIONS 

Theorem 5« Given a positive integer k, an F-type P3j k sequence exists if and 
only if the Diophantine equation 

x2 -• 5y2 = 4/c (20) 

is solvable in integers. 

Proof: (=>) Let {an} be an F-type P3tk sequence with the associated se-
quence {bn} so that {a1, b19 a2, b2, ...} is a sequence of the Fibonacci type 
wherein the relations are given by (17). Then 

k = hz - gh - g2; 
that is, 

h2 - gh - (g2 + k) = 0. 
a ± /5a2 -f kk 

Treating this as a quadratic equation in ln9 we obtain h = - ^ . This 
implies 

5g2 + l±k = A2 

for some integer A* Hence, equation (20) is solvable in integers. 

(«=) Let (x, y) be an integral solution of (20) . Then x = y (mod 
2). Form the Fibonacci-type sequence {a19 .b19 a23 b2, . ..} by taking a1 = y9 
b-L = (x + z/)/2. Then by Theorem 4 there is an integer fcf such that {an} is an 
F-type P3tk' sequence. We have Zc' = a^ - 3a±a2 + a*. Since 

x + 3y a2 = ax + o2 = — - j — — 

we obtain 

fc r - x2 - 5y2 

Theorem 6. Given a positive integer k9 a necessary condition for the existence 
of an F-type P3,fc sequence is that 

k t 2, 3, 6, 7, 8, 10, 12, 13, 14, 17, 18 (mod 20) 

and 

k t 10, 15, 35, 40, 60, 65, 85, 90 (mod 100). 

We omit the proof. 

To prove our next result, we need the following: 

Theorem 7* (Nagell [4]) If u + v/5 and uf + v'y/D are two given solutions of 
the equation 

u2 - Dv2 = C (D: positive, square free), 
a necessary and sufficient condition for these two solutions to belong to the 
same class is that the two numbers (uuf-VVfD)/C and (vur-uv')/C be integers. 

In the following theorem, we prove a result for the Diophantine equation 
(20) by considering the terms of the corresponding F-type P3tk sequence. 
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Theorem 8. Given a positive integer k, the number of distinct classes of solu-
tions of equation (20) is divisible by 3, 

Proof: If (20) is not solvable in integers, then the theorem holds trivi-
ally. Assume the solvability of (20). Let (x19 y±) be an integral solution of 
(20). Take a± = y1, b1 = (x1 + y1)/2 and a2 = a± + b1; i.e., a2 = (x1 + 3yJ/2. 
Then by Theorem 5 we have 

k = a\ - 3a1a2 + a\ 

and {an} i s an F - type P3)k sequence . We have 
b2 - a2 + b1 = x± 4- 2z/1, 

3a; x + 7y± 5x± + l l2/x 
as = a2 + b2 = 2 ' bs = as + b2 = 2 5 

13a?! + 29y1 
a4 = a3 + b3 = hx1 + 9y1, bh = ah + Z?3 = ~ • 

Choose a^ , z/̂  (i = 2, 3, 4) such that yi = a^ and (xi + y^)/2 = b^; i.e., a?̂  = 
2bi - yt. Then x2 = (3x1 + 5yJ/29 x? = (7x± + 15y1)/2, xh = (9a?x + 20y1)/2. 
One can easily check that a^ + y/5yi (i = 2, 3, 4) are solutions of (20). Since 

^1^2 ~ ^1^2 _ 1_ ^1^3 ~ ^/lX3 _ _3_ , ^2^3 " ^2 X3 _ _1_ 
4k ~ 2' 4fc "" V a n d 4k "" " "25 

by Theorem 7 it follows that each xi + v5y. (i = 1,2, 3) belongs to a distinct 
class of solutions of (20). Now 

xh + JEy^ = (9x1 + 20y1) + V5(4a?1 + 9y±) = (x1 + /5y±)(9 + 4i/5)n . 

Since 9 + 4/5 is the fundamental solution of the equation 

u2 - 5v2 = 1, 

it follows that x1 + VEy1 and a^ + A/SZ/̂  belong to the same class of solutions 
of (20). Thus, given a solution x± + y/5yi of (20), we obtain three consecutive 
terms a^ (i = 1, 2, 3) of an F-type P3ik sequence which in turn yield two more 
solutions xi + ^Hi (̂  = 2, 3) of (20) such that xt + /Sy^ (i = 1,2, 3) belong 
to different classes of solutions of (20). Further, it follows by simple in-
duction that, for any integers i,if

sj, the terms CL3i + j and cz3if+3- (j = 0, 1, 2) 
yield solutions of (20) which belong to the same class. Hence, every F-type 
P3)k sequence contributes exactly three distinct classes of solutions of (20). 
Consequently, the number of distinct classes of solutions of (20) is divisible 
by 3. 

Definition 3: Given a positive integer k9 two P3ik sequences {an} and {a'n} are 
said to be distinct if there do not exist integers r and s such that ar = af

s. 

Theorem 9. Given a positive integer k9 the number of distinct F-type P-$ik
 se~ 

quences is equal to 1/3 of the number of distinct classes of solutions of (20). 

Proof: Follows from Theorem 8. 

CONCLUDING COMMENTS 

Our next investigation is on PPjk sequences with r > 4. Regarding this, we 
prove the following theorem. 
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Theorem 10. If k - 2 (mod 4 ) , then there is no Pr k sequence with r ^ 4. 

Proof: We follow the reasoning given by S. Mohanty [3]. Let k E 2 (mod 4) 
and let {an} be a Phtk sequence. Then, for any two integers i, j satisfying 
| j - i | < 3, we have 

a.a- +• k = B2 (21) 

for some integer 5. If a^ E 0 (mod 4) or if a^ E 0 (mod 4), then (21) implies 
B2 E 2 (mod 4) , which is impossible. Hence, neither a^ nor a^ is 0 (mod 4). 
If ai E <Zj (mod 4), we have a contradiction; thus the elements ai, a- + 1, a-z; + 2> 
and a^+ 3 do not share the property p . 

The foregoing complements the work of Horadam, Loh, and Shannon [2], whose 
Pellian sequence {Qn(N)} is a P3,#_2 sequence which is there also related to 
the even-subscripted Fibonacci numbers, to perfect squares, and to Diophantine 
equations. 
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