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INTRODUCTION

Definition 1: Let k be a given positive integer. Two integers o and B are said
to have the property P, (resp. p.y) if oB + k (resp. af - k) 1is a perfect
square. A set of integers is said to be a P, set if every pair of distinct
elements in the set has the property p . A sequence of integers is said to be
a P, ; sequence if every r consecutive terms of the sequence constitute a B,
set.

Given a positive integer k, we can always find two integers o and f having
the property D, - Conversely, given two integers o and B, we can always find a
positive integer k such that o and R have the property Dy - If S is a given Py
set and j is a given integer, then by multiplying all the elements of § by J,
we obtain a P ;2 set. Suppose we are given two numbers g, < a, with property
p, and we want to extend the set {a,,a,} such that the resulting set is also a

P, set. Toward this end, in this paper we comnstruct a P; , sequence {a,}.

ASSOCIATED Py % SEQUENCES

Suppose

aa, + k = b} ¢5)
and let a, € {a;, a,, ...}, a P, set. Then we have

a,a, + k = x? (2)
and

a,a, + k = y? (3)
for some integers x and y. Eliminating a, from (2) and (3), we obtain

X? - a,a,7? = ka,(a, - a;), (4)
where X = aq,x, ¥ = y. Using (1) in (4), we obtain

X* - (b2 - KY* = k(aZ - b + k). (5

One can check that X = a,(a; + b;), Y = a, + by, is always a solution of (5).
When bf - k is positive and square free, (5) has an infinite number of solu-
tions. Henceforth, we concentrate on the solution X = a,(a, + by), ¥ = a, + b,
of (5). This gives

. 2

a,ay + k = by,

= 2

a,a, +k =cj,
with
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b, = a

2 +bys e, =a

1 1 ¥ Dby, ay =by e

2

In what follows, we construct three sequences {a,}, {b,}, and {¢,}, where ajs
AysQys bys by, and ¢, are as above. We say that {b,} and {¢,} are the sequences
associated with {q,}. Taking

by =as+b,, ¢, =a,+b,, a, =b; +c,,
we can see that 2(a; + a,) - a; = a,. Using this fact, we obtain
a,ay, + k =c; and aqza, + k = b2.

For the construction of the sequences {an}, {bn}, and {cn}, the following dia-
gram can be helpful.

_2 an-1 an

ai asz 4613 4(14 an
\ \ . \ 5 \ '.( "'(
ci c; i c a

Diagram 1

1]

Explanation for the diagram: Write b, = vaia, + k in the second row, in the
space between q; and a,; and write c; = Va,a; + kK in the third row, in the
space beneath aq,. Along the arrows shown by thick lines, sum the elements of
of the first and second rows to obtain the elements of the third row. Along
the curved arrows, sum the elements of the first and second rows to obtain the
elements of the second row. Along the arrows shown by dotted lines, sum the
elements of the second and third rows to obtain the elements of the first row.
The preceding discussion shows that the scheme provided in the diagram is valid
for ai, a,, as, ay, b1, by, by, ¢1, and ¢,. Let m > 2. Assuming the validity
of Diagram 1 for aj, ..., Ay, b1s ee.s by_1, and 3, ..., C,_2, it can be proved
without much difficulty that

z(an + an—l) = An-2 = An+1s (6)
and that the scheme is valid for a;, ..., d,,1s Pys «ves by, and ¢y, «ous Cp_q-
Theorem 1. The three sequences {a,}, {b,}, and {c,} have the same recurrence
relation.

Proof: We have a,,, = 2(a, + a,_,) - a,., [see (6)]. Now
b,,1 = Qny1 t b, =c,_, +2b, =a + b,_, + 2b,
an + bn—l + (bn-l - bn-z) = Z(bn + bn—l) - bn—z’ (7

n-1

It

and

e =aqa = 2a

n+l ar1 T Duin ne1 ¥ b, = 2(c,.y + b,) + by

26,1 + by + 2(c, - a,) = 2(c, + cp-1) + (a, + Dy_1) - 2a,
z(cn + c;1—1) = Cu_n- (8)

Hence, the theorem is proved.
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We shall now obtain additional relations. TFirst, using

py1 = Cuy1 — bn+l and Apyo = Cy + bn+1’

we have
A1 T Guyp = Cn T Ciqs
that is,
Aue1 — Cp = —(Apyn = Cuyr)d s (9)

Next, from

b, = ¢y, - Ay and by, = bn+1 T dpy1o
we obtain

2b, = (¢, + by, 1) = ey = Ans
which yields

2by = Gpyy = Gpyy - A (10)
Next,

Upyo = Oupr tan = By +¢) = (byyy - b)) +oa,

I

e, + by + a,

2¢,. (11)

[

From (10), we obtain

n+1 + ay + 2“ana + ks

a n+1

n+2 o a

and from (6) we have

Auyo = 2(a, 1 + an) - a

n-1
Hence,
App1 F Ay = Ay = Zvanan+l + k,
which gives the relation
2

2 2 — - =
a,,, +a,+a, | - 2a, ,a, - 2a,_,a,., - 2a,.0a,, = Lk (12)

FIBONACCI RELATIONSHIPS

Next we shall exhibit a relationship between either of the sequences {a,},

{b,}, and {c,} and the Fibonacci sequence {F,}. The Fibonacci sequence {F,} is
defined by

Fpo=Fy, =1, F o, =Fy + Fe

V. E. Hoggatt, Jr., and G. E. Bergum [l] have shown that the even-subscripted
Fibonacci numbers constitute a P,,, sequence. We can set

a

ne1 = Fays ap =F, ., and g ., =F

2n+ 4
in (12) and obtain

.2 2 2 -
B ¥ Fpin * Fomen = 2F 0, F oy = 2F2n+2F2n+u"2F2nF2n+q = 4.

Theorem 2. Any sequence {a,} satisfying (6) is given by

a, =~-F, _JF,_,a, + F, _,F,_.a, +F, _F, _.a n = 4. (13)

n-3"n- n-3"n-1"2 n-2"n-1"37*
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Proof: TFrom (6), we get

a, = 2(a3 + az) -a, = -F.F.a, +F Faaz + F.F.a

1 17 2% 1 27 373°
a, = 2(a, + aa) -a, = -20, + 3a, + 6a3 = -F,Fa, +F,Fa,+ Fquaa,
a, = 2(a5 + aq) -a, = —6a1 + 10a2 + 15a3 = _FaFual + F3F5a2 + F,F.a,.

So the theorem is true for n = 4, 5, 6. Let n 2 4 and assume that the theorem
is true for all integers J up to n. Using (6) we have
Ans1 = 2(=Fp-3Fp-sa1 + Fn-3Fn_1as + Fp.2Fp-1a3)
+ 2(-Fp_wFu-sar * FpoyFn_sa, + FuosFn_ja3)

= (-FusFy_yay + Fu_sFyu_3a; + Fp_wFn_3as);

that is,
ana1 = (=2F, 3F,_p = 2F, yFp 5 + FyosFy_y)a;
+ (2Fp gFp 3 + 2F, WFu_p - FuosFu_3)as
+ (2F, pFp-1 + 28, _3Fy_p = Fy_yFy_3)as. (14)

The coefficient of @; in (14) is given by

‘[2Fn—3(Fn-2 + Fn—q) - Fn—k(Fn—s - Fn-h)]

~(2Fy3Fp oy + FpsFu_y + Fily)
~(2Fy _3Fu_p + FpoyFn-2)

= ~F, 2 (2F, 3 + Fn-y)

= -Fy o (Fu_3 + Fpoy)

= ~Fy_ oFy_1.

Similarly, upon simplification, we have the coefficients of a, and a3 in (14)

equal to F,_,F, and F, _,F,, respectively. This proves Theorem 2.

Remark 1. The relations (6), (7), and (8) imply that (13) remains true if the
a's are replaced by b's or by c¢'s.
Now we express b's in terms of a,, a,, a,. We have
2b, = —a, *+ a, + a,.
Using a, = 2(a; + a,) - a,, we obtain
2by = -a, + a; + a, = -a, +a, + 3a,,
2b, = -a, + a, + 3a, = -3a, + 5a, + 7a,.
Suppose 2b, = -r,a, + s,a, + t,a,. Then
2b

Hence, 2b,,1 = =VPp, 101 + 8,418 + t,,1a03, where

wil = “Ppa, + s,a, + tha, = -t,a; + 2(t, - ry)a, + (26, + s,)a;.

t, =1, ty =23, t, =17,

nel t”’
Spe1 T 2tn - tn—l’
tn+1 = Z(tn + tn-l) - 2‘;n~2 (H > 4)' (15)
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Similarly, we have 2¢ __,

Wy =W, T
un+1 = Wy
Vg1 = 2w,
z"77L+1 =

- wn-l’

2(wn + wn_l)

ON P, ; SEQUENCES

-w (n 2 3).

= U@yt VA, t W, a0, where

(16)

Thus, the sequences {a,}, {b,}, {c,}, {¢t,}, and {w,} have the same recurrence
relation.
Next we consider the possibility for the coincidence of the sequences {a,}

and {c,}.

Theorem 3.

In this regard, we have the following:

some integer

all
all
all
all
all
all
all
all
all
all
all

integers
integers
integers
integers
integers
integers
integers
integers
integers
integers

integers

Let {a,} be a P, sequence with the associated sequences {b,} and

A\
—

S X I I3 I IR

for all integers n > 3

b, is a P, _; sequence with the associated sequences {a,} and {b,}

{e,}. The following statements are equivalent:
(i) a,,, = ¢n for
(i1) a,,; = en for
(111) aypq = by + ey for
(iv) cypr = bpyr + cp for
(v) ay,q = an + bn for
(vi) B,yp = 3b,.q = bn for
(vii) e,,, = 3¢,4, - for
(Viii) a,,p = 3a,,, - an for
(ix) k = a2,, - 3a,a,,, + a3 for
(x) -k = b2, , - 3b,b,,, + b3 for
(xi) k =c2, . - 3¢,c,,, + c2 for
(xii) a, = -F,,_,a, + F,,_,a, for
and
b, = -Fyy_3ay + Fy, 10,
(xiii)
(where b,b,, , - k = a2, ;).
Proof: The following scheme may be adopted.

(i) = (ii) = (iii) = (iv) = (v) = (vi) = (vii) = (viii) = (ii) = (1),

(v) = (ix) = (viii),

(ii) = (xi) = (vii);

(ii) = (xii) = (ii)

W) = (x) = (vi);

and (x) = (xiii) = (x).

The proof itself is left to the reader.

Definition 2:
{b,} and {c,}.

4o

F-TYPE SEQUENCES

Let {a,} be a P, ; sequence together with associated sequences
We say that {a,} is an F-type sequence if the sequence
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{ay, bys a,s bys ays bys «on 1,

obtained by juxtaposing the two sequences {a,} and {},}, is of Fibonacci type,
i.e., fy =ay, f, =by, and f, = f, | + funops n 2 3.

Theorem 4. A P, , sequence {a,} with the associated sequences {b,} and {ec,}
for which any one of the equivalent statements in Theorem 3 holds is an F-type
sequences. Conversely, given a Fibonacci-type sequence

T=1{g, h, g+ h, g+ 2h, ...},

where g and % are two positive integers with g < %, if {a,} and {b,} are the
sequences formed by taking the terms in the odd and even places, respectively,
of T, in the same order as they appear in 7T, there is an integer k such that
{a,} is an F-type P, , sequence for which the equivalent statements in Theorem
3 hold.

Proof: (=) Using ¢,-1 = ay-1+b,-1, we obtain a, = an-1+b,-1 for n > 2.
We have that b, = a,.1 + b,_, for n 2 2. Hence, the sequence {al, bl, a,, b
...} is of the Fibonacci type.

&) We have

2

ay =g, by =nh,
= Fyp 39 + Fyy s by = Fhppg + P (n22), an

a n

n

where {F,} is the Fibonacci sequence. One can check that

a, +a,,, = 3a,,, for all n 2 1. (18)
Now
2 2 2 2
(an+2 - 3an+lan+2 + an+l) - (an+1 - 3anan+l + an)

2 2
= (Ap4p - az) - 3an+l(an+2 - a,)

= (a -a)(a,,, + a, - 3a,,,) =0 for all n > 1.

n+2

Hence, we have

2 _ 2 2 _
a§+l - 3a,a,,., ta, =a,,, - 3an+lan+2 + a,,, = constant, for all =n.
2 2 _ . . -

Let a’ , - 3a,a,,, t a; = k. In particular, putting »n 1, we get

k =h2 - gh- g2. (19)
We have, using (19),

- 2 _
Ay T k= (Fop 5Fy oy = Vg™ + (Fyy 3Ty, + Fop 5Fon Dgh

+ (FZn—ZFZ'rL + 1)%2.

It can be seen that Fop 3o, — 1 = FopoFoy_1- Therefore,
ApOnyy T k= F%n—zgz + 2F,, o F,, _1gh t F%n—lhz = b:.
Next,
A, 1@, T k= (Fy, Fpp_y - Vg? + (F,, _F,, * Fyp JFy, 1 = Dgh

+ (FZnFZn—Ll + l)hz'
After some calculation, we have

= 2 2
a a, +k FZn—ag + 2F2n

n-1"n

2 2 = 42
_3gh + an—zh @

- ZFZn
Consequently, the sequence {an} is an F-type P,,; sequence with the associated
c-sequence given by ¢, = a,,; for all integers n = 1.
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ASSOCIATED DIOPHANTINE EQUATIONS

Theorem 5. Given a positive integer k, an F-type P, , sequence exists if and
only if the Diophantine equation

x? - 5y% = 4k (20)

is solvable in integers.

Proof: (=) Let {a,} be an F-type P, , sequence with the associated se-

quence {b,} so that {a,, b;, a,, b,, ...} is a sequence of the Fibonacci type
wherein the relations are given by (17). Then

k=1 - gh - g%
that is,

n® - gh - (g*> + k) =0.
g * V592 + 4k
> .

Treating this as a quadratic equation in %, we obtain A = This
implies
5% + 4k = A?

for some integer A. Hence, equation (20) is solvable in integers.

& Let (x, y) be an integral solution of (20). Then x = y (mod

2). TForm the Fibonacci-type sequence {a;, by, a,, b,, ...} by taking a; = y,
by = (x + y)/2. Then by Theorem 4 there is an integer k' such that {a,} is an
F-type Pj s sequence. We have k' = a5 - 3a,a, + a?. Since
x +
a, =a; +b, =———§;¥i

we obtain
2 2

k= S g,
Theorem 6. Given a positive integer k, a necessary condition for the existence
of an F-type Pj,; sequence is that
k%2, 3,6, 7,8, 10, 12, 13, 14, 17, 18 (mod 20)
and
k # 10, 15, 35, 40, 60, 65, 85, 90 (mod 100).
We omit the proof.
To prove our next result, we need the following:
Theorem 7. (Nagell [4]) 1If u + oD and u' + v'VD are two given solutions of
the equation
u? - mw? =¢ (D: positive, square free),
a necessary and sufficient condition for these two solutions to belong to the

same class is that the two numbers (uu’-vv’'D)/C and (vu'-uv')/C be integers.

In the following theorem, we prove a result for the Diophantine equation
(20) by considering the terms of the corresponding F-type P, , sequence.
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Theorem 8. Given a positive integer k, the number of distinct classes of solu-
tions of equation (20) is divisible by 3.

Proof: 1If (20) is not solvable in integers, then the theorem holds trivi-
ally. Assume the solvability of (20). Let (x,, Y,) be an integral solution of
(20). Take a, =y,s by = (x14~y1)/2 and a, = a; + by; i.e., a, = (x; + 3y,)/2.
Then by Theorem 5 we have

= 2 2
k =a; - 3aja, + a3
and {a,} is an F-type P3,x sequence. We have
b, =a, + b, =z, + 2y,

_ 3%y + 7y, b _ 5y + 11y,

a, =a, +b, 5 s s =a, +b, = 5 s

]

13z, + 29y,

au=a3+b3 3

bey + 9,, b, =a, + b, =

Choose x;, y, (¢ = 2, 3, 4) such that y, = a; and (x; + y;)/2 = b;; i.e., x; =
2b; - y,. Then x, = (32, + 5y,)/2, x5 = (7x;+ 15y,)/2, =z, = (9x, + 20y,)/2.
One can easily check that x, + ngi (2 = 2,3, 4) are solutions of (20). Since
Li¥o — 1%y, 1 TilY3 - YTy 3 LYy = Yo&3 1
—_—= — = and ————— ==

4k T 4k Lk 2°

by Theorem 7 it follows that each x, + ngi (2 = 1,2, 3) belongs to a distinct
class of solutions of (20). Now

x, + Y5y, = (9z, + 20y,) + V5(4z, + 9y,) = (z, + V5y,) (9 + &/5)".
Since 9 + 4V5 is the fundamental solution of the equation
u? - 502 =1,

it follows that x; + ngl and x, + ngq belong to the same class of solutions
of (20). Thus, given a solution x; + 5y, of (20), we obtain three consecutive
terms a; (¢ =1, 2, 3) of an F-type P, ; sequence which in turn yield two more
solutions x, + ngi (i = 2, 3) of (20) such that x; + ngi (¢ = 1,2, 3) belong
to different classes of solutions of (20). Further, it follows by simple in-
duction that, for any integers ¢,7',j, the terms ag;,; and az;y; (4§ = 0, 1, 2)
yield solutions of (20) which belong to the same class. Hence, every F-type
P,  sequence contributes exactly three distinct classes of solutions of (20).
Consequently, the number of distinct classes of solutions of (20) is divisible
by 3.

Definition 3: Given a positive integer k, two P, , sequences {a,} and {a}} are
said to be distinct if there do not exist integers »r and s such that a, = af.

Theorem 9. Given a positive integer k, the number of distinct F-type Pj3,; se-
quences is equal to 1/3 of the number of distinct classes of solutions of (20).

Proof: Follows from Theorem 8.

CONCLUDING COMMENTS

Our next investigation is on P, , sequences with r» 2 4. Regarding this, we
prove the following theorem.
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Theorem 10. If k¥ = 2 (mod 4), then there is no P, x sequence with r Z 4,

Proof: We follow the reasoning given by S. Mohanty [3]. Let kX = 2 (mod 4)
and let {a,} be a P, , sequence. Then, for any two integers %, j satisfying
lj - i| < 3, we have

aga; + k= B? (21)

for some integer B. If a; = 0 (mod 4) or if a; = 0 (mod 4), then (21) implies
B%2 = 2 (mod 4), which is impossible. Hence, neither a; nor a; is 0 (mod 4).
If a; = a; (mod 4), we have a contradiction; thus the elements a;, a

i+12 %igzo
and a;,, do not share the property P, -

The foregoing complements the work of Horadam, Loh, and Shannon [2], whose
Pellian sequence {g,(#)} is a P,, ., sequence which is there also related to
the even-subscripted Fibonacci numbers, to perfect squares, and to Diophantine
equations.
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