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1. INTRODUCTION 

In this paper, we study a sequence of positive integers defined by recur-
rence that have applications in combinatorics and probability theory. 

Let a be a permutation of Mn = {1, ..., n}, i.e., a bijection M n •> Mn. 
Then k E !Nn is a regeneration point of G if o~QNfe) = 3Nfe. Here a will be a ran-
dom permutation, i.e., we consider a to be chosen at random from the set Sn of 
permutations of ]N„. Equivalently, we define a probability measure Pn on the 
power set of Sn by Pn({oQ}) = Pn(a=G0) = 1/n!, a0 G 5n. Expectation with re-
spect to Pn will be denoted by En. 

Let Ak be the event that /c is a regeneration point of the random permuta-
tion. Then 

Pn(Ak) = kl(n - k)\/n\ = (J)"1, k G M n . (1.1) 

For the event that /c15 ..., kr, with 1 < k1 < ••• < fcr < n, are regeneration 
points, we have 

PnWfcii4^ ... i4fcr) = k1l(k2 - k±)\ ... (kr - ^ . ^ K n - fcr)!/n!. (1.2) 

Let Af be the total number of regeneration points in a. The (factorial) 
moments of M can be expressed in terms of (1.2), e.g., 

EnM = 1 + «n = 1 + E 1 ? ^ ^ ) = 1 +nt1(l)'1' ^'3) 

Note that n is always a regeneration point. 
The theory of regeneration points is dominated by the numbers on or o(n) , 

n = 1, 2, ..., where on is the number of elements of Sn that have only one re-
generation point, or 

Pn(M = 1) = en/n\ , n = 1, 2, . . . . (1.4) 

This will be seen in Section 2. Here we mention the relation 

Pn(k) = Pn(v = k) = ok(n - k)l/nl9 k E M n , (1.5) 

where v is the first regeneration point of the random permutation a. Since 
Pn(l) + "" + Pn(n) = 1, we have 

£ ( w " k)\ok/n\ = 1 , n > 1. (1.6) 

The on can be computed recursively from (1.6). We find 

c, = c2
 = IJ. ^3 = 3 , £if = 13,- c5 = 71, 

(1.7) 
efi = 461, <?7 = 3447 = g-.x 383. 
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From (1.6) we see, by induction on n, that the on axe odd. Divisibility of the 
cn is considered in Section 4. By (1.4), the principle of inclusion and exclu-
sion, and by (1.2), 

cjnl = 1 - P(A± U ••• U An_1) = 1 + nZ(-l)hTh = £ (-l)*Tfc. (1.8) 
h=l h=0 

Here TQ = 1 and for h > 0, 

r, = E ^ W ^ ... ̂ ) = E'VCi, - i,)i ... (i, - H.^Kn - ih)!/n! 

= Z ' J V J V . . . Jh + i]Jn\, 

where E r sums over a l l i l s . ., . , i h wi th l < i 1 < ° * * < i ^ ^ n - l and E " over 
a l l Jx > 1, . . . . Jh + i > 1 w i t n J i + • " + Jh+1 = ^ . I n (1-8) t h i s g i v e s , by 
p u t t i n g h = m - 1. 

«» - £ ( - D m - 1 2 : * J 1 ! . . . 3m\, n > \ . ( 1 .9 ) 
m = l 

where E sums over all j \ > 1, ..., j m > 1 with j\ + ••• + j m = n. 
In Section 2, an integral equation for the exponential generating function 

of the cn will be derived. Section 3 studies the asymptotic behavior of cn for 
n -> °°. We have on/n\ -> 1, so M tends to 1 in probability as n -> °°. In Section 
5, some applications of the cn in. combinatorial probability theory are given. 

2. GENERAL FORMULAS 

For the total number M of regeneration points we find, by specifying re-
generation points only at j l 9 j1+ j 2 , ..., j x + ' • •' + dm = n, 

Pn(M = m) = H"toU1)oU1) '" cUm)ln\, m E Wn> (2.1) 

where E is the same as in (1.9). The event {M >/??}, with m ̂  2, means that 
there are at least m - \ regeneration points in {1, ..., n - 1}. This gives, 
in the same way as (2.1), 

Pn(M>rn) = L'c(Ji) *" cUm-i)(n - 3i ~ "" -Jro-i)*/"* 
(2.2) 

= E * ^ ^ ) ••• oUm_1)jm\/nl9. m = 2, ..., n, 

where E' sums over all j x > 1, ..., Jm_! ̂  1 with j 1 + • • • + j m _1 < n - 1 and 
E * is the same as in (1.9). 

For the first regeneration point V we have, with (1.5), 

Env = J2kok(n - k)\/n\ = £ (n + l)Pn(fc) - £ efe(n + 1 - fc)!/n! 

(2.3) 

= (« + 1) - (n + 1) EP n + 1(k) = (n + l)Pn + 1(n + 1) = o /nl . 
k = i 

From the relation k2 = (n + 2 - fc) (n + 1 - A:) + (2n + 3)k - (n + 2) (n + 1) , we 
find, in a similar way, 

Envz = {2(n + l)c„+1 - e„+2}/n!. (2.4) 
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Let 

C(z) = 2 zkck/kl, \z\ < 1 

From (1.6), 
* - i - • • ( 2 - 5 ) 

s(i - 3)-1 = 2 > n E ° * ( * - V-/n'- - • 2 > * i > " ( « - fe)'/"! 
« - l ?c-l • k-1 n*k 

= E^E^4JV!/a + J)!. 
* = l j = o 

With the relation 

/ (3 - x)k-\l - a;)" 1^ = (fc - 1)! f;zk + *j\/(k + j)!, 
./ 0 j = 0 

to be derived by putting x = zt and expanding (1 - at)"1, we see that 

s(l - s)" 1 = I Cf(s - x)(l - x)~1dx, 
Jo 

and with partial integration, noting that (7(0) = 0 , 

z(l - z)'1 = C(z) +• | (1 - aO~2C(s - #)<&?, ' |JS| < 1. (2.6) 
Jo 

The author was unable to find a solution of (2.6) in closed form. The Neumann 
series solution gives a series of iterated convolutions which, on expansion 
into powers of zs leads back to (1.9). 

3. ASYMPTOTIC BEHAVIOR 

We use the notation for falling factorials 

(n)r = n\/(n - 2?)!, r = 0, ..., n, n =•• 1, 2, ... . (3.1) 

First we consider Q = EnM- 1 given by (1.3). Rockett [4] gave an expres-
sion for 

but direct use of (1.3) seems better for asymptotic estimates. We have 

Qn = In-1 + 4(n)"1 + V (n3)-\ n > 6, (3.2) 

Fn = £ fc!(n - fc)!/(n - 3)!,' « > 6. .(3.3) 
fc = 3 

Theorem 1. We have 

Fn > 12, n > 7; 7n < 156/7, n > 6; (3.4) 

7n = 12 + 0(n-1), n -* ~; ' (3.5) 

Vn+1 < Vns n > 11. (3.6) 

Proof: The first inequality in (3.4) follows by considering the terms with 
k = 3 and k = n - 3 in (3.3). The relation (3.5) follows by estimating the 
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te rms i n (3 .3 ) w i th k = 4 , k = n - 4 , and 5<k<n - 5 . From ( 3 . 3 ) , for n > 6, 

n-3 
K+i ' vn = 6 + E k ! ( n - fc)!{(n + 1 - k) (n - 2 ) " 1 - l } / ( n - 3 ) ! 

k = 3 

= 6 + 4(n - 2 ) " 1 7 n - £ (fc + l ) ! ( n - fc)!/(n - 2 ) ! 
fc = 3 

n-2 

( 3 . 7 ) 

= 6 + 4(n - 2)_ 1FM - £ ft!(rc + 1 - h) I / (n - 2)1 
h = b 

= 12 + 4(n - 2 ) " 1 7 n - Vn + 1, 

so t h a t 2 7 n + 1 = 12 + (n + 2) (n - 2 ) - 1 7 ^ . S u b s t i t u t i n g t h i s i n t o (3 .7) shows 
t h a t Vn+1 < Vn , for n > 6, i f and only i f 

7M > 12 + 48(n - 6)" ( 3 . 8 ) 

From t h e terms i n (3 .3 ) w i th k K 5 and k > n - 5 , 

7n > 12 + 48(n - 3 ) " 1 + 240(n - 3 ) _ 1 ( ^ - 4 ) " 1 , n > 11 . 
Applying this to (3.8) we find (3.6). From (3.6) and direct computation of Vn, 
n = 6, ..., 11, we see that max Vn = 156/7 is reached for n = 11. Better bounds 
for larger n may be obtained from (3.6) by computing some Vn. 

For the study of cn, we introduce the following notation, see (1.5) and 
(3.1): 

rc-l 

Hn = 1 - oJn\ = P n ( v < n - 1) = 2 > f c ( n ~ k ) ! / n ! ; (3 .9 ) 
k = l 

Dn = ( n ) 3 { # n - In'1 - ( n ) " 1 } , n > 3 . (3 .10) 

We need some numerical values of nHn and Dn. By means of (1.6), (3.9), and 
(3.10), the values of nHn and Dn for 3 ̂  n ^ 200 were computed for the author 
at the University of Groningen Computing Centre. Part of the values are given 
in Tables 1 and 2, but the most important numerical result is 

Dn+1 < Dn, n = 13, ..., 199. (3.11) 

Table 1 

n 

1 

2 

3 

nHn 

0.000000 

1.000000 

1.500000 

n 

4 

5 

6 

nHn 

1.833333 

2.041667 

2.158333 

n 

7 
8 

9 

nHn 

2.212500 

2.227579 

2.220660 

Theorem 2. With Dn defined by (3.9) and (3.10), 

Dn > 4, n > 9; Dn < 6, n > 20. (3.12) 

Proof: Since ck < k\, we see from (3.9), (1.1), (1.3), (3.2), and (3.4) 
that nEn < nQn < 3, n > 9. 
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(3.13) 

(3.14) 

With Table 1, we then extend this to 

nEn < 3, n > 1. 

From (3.9), for n > 7, 

n\Hn > (n - l)lo1 + (n - 2)\c2 + (n - 3)lc3 

+ 6o(n - 3) .+ 2a(n - 2) + e(n - 1) 

With (1.7) and (3.13), writing ok = kl (I - Hk) for fc > n - 3, this gives 

tf„ > 2n~x + 3(n)-x - 18(n)^, n > 7. (3.15) 

From (3.15) we see that nHn > 2, n > 9, and then from Table 1, 

nHn > 2, n > 5. (3.16) 

From (3.9) for n > 9, with ck < fe!, 

(4 n-1 \ £ + 2 K(n 
k=1 k=n-hf 

k) ! 4- (n - 9)5!(n - 5) !. 

With (1.7) and (3.16), writing ok = kl(I - Hk) for k > n - 4, we find 

#n < 2n-1 + (n)"1 + ^(^(n)"1, n > 9; 

fc(w) = 5 + 25(n - 3)" 1 + (120(n - 9) - 48)(n - 3)~1{n - 4)" 1. 

(3.17) 

(3.18) 

(3.19) 

Table 2 

n 

3 

4 

5 

6 

7 

8 

9 

Dn 

-2.000000 

-3.000000 

-2.500000 

-0.833333 

1.375000 

3.558333 

5.356944 

n 

10 

11 

12 

13 

14 

15 

16 

Dn 

6.625992 

7.376414 

7.702940 

7.726892 

7.561317 

7.295355 

6.991231 

n 

17 

18 

19 

20 

21 

21 

23 

Dn 

6.687779 

6.406247 

6.156020 

5.939237 

5.754089 

5.596962 

5.463713 

By elementary computation we see that h{n+ 1) < h(ri) for 145n > 1 8 7 6 o r n > 1 3 
and 7z(196) < 6, so that h(n) < 6, n > 196. Hence, Dn < 6, n > 196, by (3.10). 
The second inequality in (3.12) then follows from (3.11) and Table 2, and it 
shows that 

En < In"1 + 2(n)~1
i 

From (3.9), for n > 93 

nlHn > ( £ 
\k = 1 

n-l 

& = n-4 

n > 20. 

c, (w - fc)!, 

(3.20) 

Here we apply (1.7) for fc < 4 and write cfe = &!(1 - #fc) for k > n - 4. Appli-
cation of (3.20) for k = n - 3 , n - 4 , and of (3.10) with £>n < 6 then gives 

Hn > 2n"1 + (n)"1 + 4(n)"1 + ^(n)(n)^, n > 24; (3.21) 
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gin) = 17 - 72(n - 4)" 1 - 48(n - 4)_1(n - 5)" 1. (3.22) 

Since gin + 1) > gin), n > 6, and #(13) > 0, 

Hn > In"1 + in)'1 + 4(n)3~1, n > 24, 

i.e., Dn > 4, n > 24. The first inequality in (3.12) then follows from Table 2. 

Remark 1 . By taking into account more terms in (3.9), it was proved in Stam [5] 
that Dn = 4 + Oin'1) and Dn+1 < Dn, n > 13. 

Remark 2. For the conditional probability P{A1 \M > 2), we see, using (1.1), 
(3.10), and (3.12), that 

P M j M > 2) = PiA^/PiM > 2) = n"1^"1 + y, n -> °°, 

and in the same way, 

P(4„.1|W> 2) - ± , 

so that the regeneration points concentrate near the end points of M n as n -> °°. 

4. DIVISIBILITY 

From (1.6) we have, since 777 divides hi If h ^ m9 the congruences 

m-l 

^2 j\cn~j = 0 (mod m), n > m. (4.1) 
j-o 

Let d 
n ~ dnini) be the remainder of <?n on division by 7??. Then the recurrence 

(4.1) also holds for the d^ and determines them completely if dly ..., dm_1 are 
given. Since dn E {0, ..., TTZ - 1}, there are at most m171'1 possibilities for 
the sequence uk = idk, ..., dk + m-2) > 0 n e of them is uk = (0, ..., 0) and this 
would give dn = 0, n ^ 1, which is excluded because cx - \. So we must have 
uk ~ uk + p ^01C s o m e ^ anc* some minimal p < T??7"-1 - 1. Since any w^ determines 
all dn3 n > 1, with (4.1) and the coefficients in (4.1) do not depend on n, it 
follows that the sequence dns n ^ 1 is periodic with period p. 

If 77? = 3, then (4.1) becomes 
°n + °n-l + 2cn-2 ~ 0 o r c n + e n - l " c ? i - 2 = ^ , mod 3 , Yl ^ 3 , 

so that (-1) on satisfies the same recurrence mod 3 as the Fibonacci numbers, 
but the initial conditions are different. We find 

cn = 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, mod 3, n = 1, ..., 10. 
So p has its maximal value 8. 

If 7?7 = 4, then (4.1) gives 

°n + °n-l + 2Gn-2 + ^n-3 E °n + °n-\ + 2°n - 2 + 2<?n - 3 E °> m o d 4 , n > 4 . 

Since the oi are odd, this gives 

°n + cn-i = 0, mod 4, n > 4. 
With (1.7) we see that £w E 1, mod 4, if n is even and on = 3, mod 4, if n > 3 
is odd. 

Since the on are odd, we have cn = 1, cn = 3, en = 5, mod 6, if en = 1, 
c„ = 0, c?n = 2, mod 3, respectively. 
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The Computing Centre of the University of Groningen computed the sequences 
for m = 5, m = 7, and part of the sequence for m = 11. For m = 5 the period is 
62, whereas 5h - 1 = 624. For m = 7 the period is 684, whereas 76- 1 = 117649. 
For m = 5S 7, and 11 all possible values of cn (mod m) occur. It is conjec-
tured that this holds for all prime m. 

We note that for m prime the last two coefficients in (4.1) are 1 and -1 
(mod m) by Wilson1s theorem (see Grosswald [2, Ch. 4.3]). 

5. APPLICATIONS IN COMBINATORIAL PROBABILITY THEORY 

If a and x are independent stochastic elements of Sn and one of them has 
uniform distribution Pn , then the points k E ]Nn such that o(Mk) = TON^) have 
the same joint distribution as the regeneration points of a random permutation, 
since c(Nk) = x(]Nk) if and only if a~1T(M?c) = ~Mk and a-1x has probability dis-
tribution Pn . 

Let X19 . . . 9 Xn be independent random variables with common continuous dis-
tribution function and Yl9 . .., Yn their increasing order statistics, i.e., the 
value of Yk is the kth smallest of the values of Xl9 ..., Xk. Then the stochas-
tic points k in JSfn such that X± + ••• + Xfc = Ji + ••• + Yk have the same joint 
probability distribution as the regeneration points of a random permutation of 
]Nn. We have Y1 < J2 < ••• < Yn with probability 1 and the conditional distri-
bution of X±s ... , Xn given Y± = yi, i = 1, ... ,. n is the same as the distribu-
tion of a(i/1) , . .., a(z/n), where a is a random element of £„ (see Renyi [3]). 
Furthermore, o{y±) + ••• + o(yk) = y1 + ••• + i/k if and only if 

o({y19 . . . , z/k}) = {z/l5 . . . , z/kL 
A deeper application is the following. Let G and T be independent random 

elements of Sn. Dixon [1] defined tn as the probability that the subgroup (x, 
G > of Sn generated by G and x is transitive, i.e., has IN„ as the only orbit. 
This occurs if and only if 0(A) = T(A) = A for no proper subset A of 3N„. Using 
formal power series, Dixon [1] proved that 

n 
J2(n - k)\k\ktk = n\n9 n > 1. (5.1) 

k = l 

A slightly shorter proof starts from Uls the orbit of < G, x) that contains 1. 
By the definition of t k , we have 

P(U1 = A) = (kl)2tk((n - fc)!)2/(n!)2, 

If. AC !Nn, 1 G A, and \A\ = k. So 

P{\UX\ = k) = (*~ jVtf, = 4) = (n - ^S/cIfet^nln)-1. 

Equation (5.1) states that these probabilities sum to 1. From (1.6) and (1.7), 

E ( n - k)!cfc + i = E (n + 1 - J)!c- = (n + 1)! - n!^ = n!n, n > 1. 
fc = 1 J = 2 

Comparing this with (5.1) we see that the sequences cn+1 and nlntn, n > 1, are 
determined (uniquely) by the same recurrence. So 

n!ntn = cn+1, n > 1. 

The author was unable to find a direct combinatorial proof of this result. 
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Let X = (Xl5 . .., Xn) be a random sample with replacement fromJSf̂ , or a ran-
dom function ]Nn -> ]Nm. If J(3N̂ .) = M^, then X19 ..., Ĵ  defines a bijection 
]Nk -> ]Nk. So the probability that h is the first k with X(~ti$k) = l$k is 

chmn-hm-n = chm~h 

and the probability that there is at least one such k is 

777 A Yl 

/ z - l 

When the sample is drawn without replacement, so that n < m, the corresponding 
probability is 

Y,ch(rn - h)\lm\. 
h = l 
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