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1. INTRODUCTION

In this paper, we study a sequence of positive integers defined by recur-
rence that have applications in combinatorics and probability theory.

Let ¢ be a permutation of N, = {1, ..., n}, i.e., a bijection IN, » N,.
Then kK € N, is a regeneration point of o if o(N;) =N,. Here ¢ will be a ran-
dom permutation, i.e., we consider ¢ to be chosen at random from the set S, of
permutations of N,. Equivalently, we define a probability measure P, on the
power set of S, by P,({0,}) = P, (0=0¢) = 1/n!, 0, € S,. Expectation with re-
spect to P, will be denoted by F,.

) Let 4, be the event that k is a regeneration point of the random permuta-
tion. Then

Palhy) = ki = By t/nt = (7) " ke, (1.1
For the event that ky, ..., K,, with 1 <k, < ++- <k, <n, are regeneration
points, we have

ol Ay ooe Ag) =kl = kDL e Gy = o)) 100 = K U/l (1.2)

Let M be the total number of regeneration points in 0. The (factorial)
moments of M can be expressed in terms of (1.2), e.g.,

o n=1 n-l/,\-1
WM=1+Q, =1+ L P (@A) =1+3 (k) . (1.3)
k=1 k=1

Note that 7 is always a regeneration point.
The theory of regeneration points is dominated by the numbers ¢, or c¢(n),
n=1, 2, ..., where ¢, is the number of elements of S, that have only one re-

generation point, or

P,(M=1) =¢,/nty, n=1,2, ... . (1.4)
This will be seen in Section 2. Here we mention the relation
Pn(k) =P (v = k) = ck(n - K!/nt, kK €EN,, (1.5)

where v is the first regeneration point of the random permutation 0. Since
p,(1) + *++ + P, (n) =1, we have

ié(n - Kle,/nt =1, n Z 1. (1.6)
k=1

The ¢, can be computed recursively from (1.6). We find

ey =c, =1, ¢c3 =3, ¢, =13, c5 =171,

(1.7)
461, c, = 3447 = g x 383.
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From (1.6) we see, by induction on 7, that the ¢, are odd. Divisibility of the
¢, is considered in Section 4. By (1.4), the principle of inclusion and exclu-
sion, and by (1.2),

e /nt =1 -PA, U U4 _)=1+ 3 (-D'r, = :2:(—1)hTh. (1.8)
Here Ty, = 1 and for % > O,
T = DR (A, 4y oon Ay) = ZINE, - DD o (B = 4 ) (= ) tn
= "5 15,0 ... jh;lz/n!,
where X' sums over all Z;, ..., ij with 1 <7, <-++< 2, <n -1 and Z" over

all j, 21, ...y gy 21 with g, + <+- +4,,, =n. In (1.8) this gives, by
putting # =m - 1. ‘

n
e, = 21(-1)”12*‘7'1‘! cee Gty m> 1. (1.9)
m= :

where L sums over all Ji1 21, vy Jp 2 1 with j, + =<+ + j, = n.

In Section 2, an integral equation for the exponential generating function
of the ¢, will be derived. Section 3 studies the asymptotic behavior of ¢, for
n > o, We have ¢,/n! ~ 1, so M tends to 1 in probability as n - ', In Section
5, some applications of the ¢, in combinatorial probability theory are given.

2. GENERAL FORMULAS

For the total number M of regeneration points we find, by specifying re-
generation points only at j,, g, + J,os «ees dy + 77 +J, =1,

B,(M =m) = Z¥e(j)e(d,) 0 eld)/nt, m EN,, (2.1)
where x* is the same as in (1.9). The event {¥ >m}, with 7n’> 2, means that

there are at least m - 1 regeneration points in {l, ..., n - 1}. This gives,
in the same way as (2.1),

B, Z2m = T'e(dy) o0 eldn) (0 = J1 = 00 = dnon)t/n
. ‘ (2.2)
= X%(d,) o0 eldp_Ddnt/nt, m=2, ..., n,
where X' sums over all §; 21, ..., Jy.q 2 1 with j; + «-+ + §,_; S n - 1 and
Y * is the same as in (1.9).
For the first regeneration point V we have, with (l1.5),
n n n
Epv = Zkep(n - k)!/nt = 3 (n+ 1P, (k) - ¥ c(n+ 1 - k)!/nt
k=1 k=1 k=1 (2.3)

(n+1) - (m+ DYP_ (k) =@+ 1DP, (n+1)=c . /nt.
k=1

n+1

From the relation k2= (n+ 2 -k (n+ 1 -k + (2n+ Dk - (n+ 2)(n + 1), we
find, in a similar way,

E, v = {2(n + 1)e, o1 = Cpapt/nt. (2.4)
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Let
C(2) =k}: zke, /ky,  |z| < 1. (2.5)
=1
From (1.6),
z(l - z)7 1t = iz"zn:ck(n - k)!/n! = ickf:z”(n - k)t /n!
n=1 k=1 k=1 n=k

= Yo, Y 2k + .
k=1 "j=0
With the relation
z o )
/-(z -kt - w)TMe = (k- 1) YRS+ Dyt
0 i=0
to be derived by putting & = 2zt and expanding (1 - zt)~!, we see that
2
2(l - z2)7t = /’C'(z - x2) (1l - 2) " *dx,
0
and with partial integration, noting that C(0) = O,
4
z2(1 - 2)"t =C(3) + _/ (1 = x)7%C(z - x)dz, |z] < 1. (2.6)
0

The author was unable to find a solution of (2.6) in closed form. The Neumann
series solution gives a series of iterated convolutions which, on expansion
into powers of 2, leads back to (1.9).

3. ASYMPTOTIC BEHAVIOR

We use the notation for falling factorials
n, =nt/n-r!, r=0, ...,n, n=1,2, ... . (3.1)

First we consider @, = E,M-1 given by (1.3). Rockett [4] gave an expres-
sion for h

z(x)

but direct use of (1.3) seems better for asymptotic estimates. We have

Q, =22t + 4+ V (ny)7t, n =6, (3.2)
n=3

V, = 2 ki(n-k)t/(n-3)!, n>6. (3.3)
k=3

Theorem 1. We have

v, =212, n>7; V, <156/7, n > 63 (3.4)

vV, =12+ 0(n"t), n > = ' (3.5)

Vg1 < Vys n > 11, (3.6)

Proof: The first inequality in (3.4) follows by considering the terms with
k=3 and kK =n -3 in (3.3). The relation (3.5) follows by estimating the
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terms in (3.3) with k = 4, k =n - 4, and 5<k<n - 5. From (3.3), for n 2 6,

]
|
<
1]

n-3
L =6+ ki -+ 1 -K® -2 -1 - 3!
k=3

n-3

=6+ 4(n-2)""V, - L (k+1!(n-k!/(xn-2)!
=3 (3.7)
n-2

=6+ 4(n -2V, -+l -n/(-2)!
h=4

12+ 4(m - )7, -7V

n+1?

so that 2V,4, =12+ (n + 2)(n - 2)'1Vn. Substituting this into (3.7) shows
that V, , <V,, for n 2 6, if and only if

vV, > 12 + 48(n - 6) " '. (3.8)

From the terms in (3.3) with Kk < 5 and Kk 2 n - 5,
V, 212 + 48(n - 3)"" + 240(n - 3) *(n - &)™, n > 11.

Applying this to (3.8) we find (3.6). From (3.6) and direct computation of V,,
n==6,...,11, we see that max V, =156/7 is reached for n = 11. Better bounds
for larger n may be obtained from (3.6) by computing some V,.

For the study of ¢,, we introduce the following notation, see (1.5) and
(3.1):

n-1
H, =1 -c,/nt =P,(v<n-1) = Y c,(n-k!/n; (3.9)
k=1

D, = (m),{H, - 2n"* = (m);'}, n > 3. (3.10)

We need some numerical values of nH, and D,. By means of (l1.6), (3.9), and
(3.10), the values of nH, and D, for 3 < n < 200 were computed for the author
at the University of Groningen Computing Centre. Part of the values are given
in Tables 1 and 2, but the most important numerical result is

D,,, <D,, n=13, ..., 199. (3.11)
Table 1
n nHy, n nH, n nH,
0.000000 1.833333 2.212500
1.000000 2.041667 2.227579
1.500000 2.158333 2.220660
Theorem 2. With D, defined by (3.9) and (3.10),
D, >4, n=9; D, <6, n=20. (3.12)

Proof: Since ¢; < k!, we see from (3.9), (1.1), (1.3), (3.2), and (3.4)
that nH, < nQ, <3, n > 9.
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With Table 1, we then extend this to
nH, <3, n21. (3.13)
From (3.9), for n > 7,
nld, 2 (n - Die, + (n - 2le, + (n - 3)!c3
+ 6c(n = 3) + 2¢(n - 2) + e(n - 1)
With (1.7) and (3.13), writing ¢, = k!(1 - H,) for k 2 n - 3, this gives

(3.14)

H, > 27t + 3(m) 5 - 18(m);*, n > 7. (3.15)
From (3.15) we see that nH, > 2, n > 9, and then from Table 1,
nH, > 2, n=5. (3.16)
From (3.9) for n > 9, with ¢, < k!,
4 n-1
mas( + Z'y“n-m!+m-9ﬁun—wu (3.17)
k=1 k=n-4
With (1.7) and (3.16), writing ¢, = k!(1 - Hy) for k 2 n - 4, we find
Hy <207t + ()5t + k() () 3%, n > 9; (3.18)
h(n) =5+ 25(n - 3)"1 + (120(n - 9) - 48)(n - 3)"Y(n - 4)71. (3.19)
Table 2
n D, n D, n D,
3 -2.000000 10 6.625992 17 6.687779
4 -3.000000 11 7.376414 18 6.406247
5 -2.500000 12 7.702940 19 6.156020
6 -0.833333 13 7.726892 20 5.939237
7 1.375000 14 7.561317 21 5.754089
8 3.558333 15 7.295355 21 5.596962
9 5.356944 16 6.991231 23 5.463713

By elementary computation we see that h(n+1) < h(n) for 145n > 1876 or n > 13
and %(196) < 6, so that h(n) < 6, n = 196. Hence, D, < 6, n = 196, by (3.10).
The second inequality in (3.12) then follows from (3.11) and Table 2, and it
shows that

H, < 2™+ 2(m);*, n > 20. (3.20)
From (3.9), for n =2 9,
n-1

4
nig, > (Z + >ck(n - k!
k=1

k=n-4

Here we apply (1.7) for k < 4 and write ¢, = k!(1l - Hy) for k 2 n - 4. Appli-
cation of (3.20) for k = n - 3, n - 4, and of (3.10) with D, < 6 then gives

Hy> 2™  + ()3 + 43t + g ()t n > 24 (3.21)
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gy =17 = 72(n - 47" - 48(n - &) *(n - 5) 7L (3.22)
Since g(n + 1) > g(n), n 2 6, and g(13) > 0,

Hy > 20"t + ()7t + 4();t, n > 24,
i.e., D, > 4, n 2 24. The first inequality in (3.12) then follows from Table 2.

Remark 1. By taking into account more terms in (3.9), it was proved in Stam [5]
that D, = 4 + O(n™1) and D,,, < D,, n > 13,

Remark 2. For the conditional probability P(AllM Z 2), we see, using (1.1),
(3.10), and (3.12), that

P(A,|M > 2) = P(4)/P(M > 2) =ntH L » % no> o,
and in the same way,
1
P(4,_,|M>2) ~ =

so that the regeneration points concentrate near the end points of N, as n - o,

L, DIVISIBILITY

From (1.6) we have, since m divides %! if % 2> m, the congruences

m-1
Jlen-; =0 (mod m)y, n 2m. 4.1
=0 -

J

Let d, = d,(m) be the remainder of ¢, on division by m. Then the recurrence
(4.1) also holds for the d; and determines them completely if dy, ..., d,_, are
given. Since d, € {0, ..., m - 1}, there are at most m" ' possibilities for
the sequence u; = (dis ..., dgsm-2). One of them is u, = (0, ..., 0) and this
would give d, = 0, n 2 1, which is excluded because ¢; = 1. So we must have
Uy = Up,p for some k and some minimal p < m™ ' - 1. Since any u; determines
all d,, n 2 1, with (4.1) and the coefficients in (4.1) do not depend on 7, it
follows that the sequence d,, n 2 1 is periodic with period p.
If m = 3, then (4.1) becomes

e, tce,.1+2¢,_, =0 or ¢, +c,.,-Cpp, =0, mod 3, n 23,

so that (—l)ncﬂ satisfies the same recurrence mod 3 as the Fibonacci numbers,
but the initial conditions are different. We find

n=1,1,0,1, 2, 2, 0, 2, 1, 1, mod 3, n =1, ..., 10.

So p has its maximal value 8.
If m = 4, then (4.1) gives

c

+ 2e + 2¢

e, te,.1+2,_ ,+6c,_5=c¢c,+c, 2 "3 0, mod 4, n 2 4.

Since the ¢, are odd, this gives
e, +¢,., =0, mod 4, n 2 4,

With (1.7) we see that ¢, = 1, mod 4, if n is even and ¢, = 3, mod 4, if n 2 3
is odd.

Since the ¢, are odd, we have e¢, =1, ¢, =3, ¢, =5, mod 6, if ¢, = 1,
e, =0, ¢, =2, mod 3, respectively.

54 [Feb.



REGENERATION POINTS IN RANDOM PERMUTATIONS

The Computing Centre of the University of Groningen computed the sequences
for m = 5, m = 7, and part of the sequence for m = 11. For m = 5 the period is
62, whereas 5“-1 = 624. For m = 7 the period is 684, whereas 7%°-1 = 117649.
For m = 5, 7, and 11 all possible values of ¢, (mod m) occur. It is conjec-
tured that this holds for all prime m.

We note that for m prime the last two coefficients in (4.1) are 1 and -1
(mod m) by Wilson's theorem (see Grosswald [2, Ch. 4.3]).

5. APPLICATIONS IN COMBINATORIAL PROBABILITY THEORY

If 0 and T are independent stochastic elements of S, and one of them has
uniform distribution P,, then the points k € N, such that o) = T(INy) have
the same joint distribution as the regeneration points of a random permutation,
since 0(Ny) = T(Wy) if and only if O-ITGNk) =N and 0”1 has probability dis-
tribution P, .

Let X, ..., X,, be independent random variables with common continuous dis-
tribution function and Y,, ..., ¥, their increasing order statistics, i.e., the
value of Y, is the k™™ smallest of the values of Xj, ..., Xx. Then the stochas-
tic points k in N, such that X + :-- + X; = Y3 + --. + Y; have the same joint
probability distribution as the regeneration points of a random permutation of
N,. We have Y, <Y, < --- <Y, with probability 1 and the conditional distri-
bution of X;, ..., X, given ¥Y; = y,, ¢ =1, ..., n is the same as the distribu-
tion of o(y,), ..., 0(y,), where 0 is a random element of S, (see Rényi [3]).
Furthermore, O(y;) + *** + 0(y;) =y, + *-* + y, if and only if

U({yl’ e ey yk}) = {yl, ce ey yk}.

A deeper application is the following. Let 0 and T be independent random
elements of S,. Dixon [1] defined %, as the probability that the subgroup (T,
o) of S, generated by 0 and T is transitive, i.e., has N, as the only orbit.
This occurs if and only if 0(4) = 1(4) = 4 for no proper subset 4 of N,. Using
formal power series, Dixon [1] proved that

n
2 (n - k)tkikt, = nln, n > 1. (5.1)
k=1

A slightly shorter proof starts from U;, the orbit of (o, T) that contains 1.
By the definition of ¢;, we have

P(U, = A) = (k)°t, ((n - D/ (n)?,
if ACN,, 1 €4, and |4| = k. So
p(lu,| = k) = (Z: })P(Ul =4) = (n - k) 'klkt, (nin) "t

Equation (5.1) states that these probabilities sum to 1. From (1.6) and (1.7),
n n+1
2:(n - K)leg,, = 2:(n + 1 - j)!cj = (n+ 1)! - nle; =nln, n=1.
k=1 Jj=2

Comparing this with (5.1) we see that the sequences ¢,,, and n!nt,, n 2 1, are
determined (uniquely) by the same recurrence. So

! = >
nint, Coipr N2 1.

The author was unable to find a direct combinatorial proof of this result.

1985] 55



REGENERATION POINTS IN RANDOM PERMUTATIONS

Let X = (X1, ..., X,) be a random sample with replacement from IN,, or a ran-
dom function W, - N,. If X(WN,) = Ny, then X;, ..., X defines a bijection
Ny >~ Np. So the probability that % is the first k with X(IN,) = N, is

n-h, -n _ -h
chm m = chm

and the probability that there is at least one such k is
mAan
rmhe,.
h=1

When the sample is drawn without replacement, so that n < m, the corresponding
probability is

iéch(m - h) ! /m).,
n=1
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