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The Fibonacci numbers satisfy the well-known equation for greatest common
divisors (cf. [2], [4]):
F;, Eb) = E}i,j) for all 2, j 2 1. (D
Equation (1) is also satisfied by some other second-order recurring sequences
of integers, e.g., Pell numbers or Fibonacci polynomials evaluated at a fixed
integer (cf. [1]). In [3], Clark Kimberling put a question: Which recurrent
sequences satisfy the equation (1)? In our paper, we answer this question for
a certain class of recurring sequences, namely that of the second-order linear
recurrent sequences of integers.

We shall study the sequences U = {u,:n =1, 2,...} of integers defined by

u, =1, u, =>b, u,,,=c*u,, +d-u,, fornz=1,

where b, ¢, d are arbitrary integers. The system of all such sequences will be
denoted by U. The system of all the sequences from U, having the property

(s u) = |ug, 5 for all 2, j > 1, (2)

will be denoted by D.

The main result of our paper is a complete characterization of all sequen-
ces from D. By describing D we solve, in fact, a more general problem of com-
plete characterization of all the second-order, strong-divisibility sequences,
i.e., all sequences {un} of integers defined by

u, =a, u,=>b, u =c-u +d-u,, forn=1,

n+2 n+1
(where a, b, ¢, d are arbitrary integers) and satisfying equation (2). It is
easy to prove that the second-order, strong-divisibility sequences are precise-

ly all integral multiples of sequences from D.

1. CERTAIN SYSTEMS OF SEQUENCES FROM U

Systems U,, F, Fi, G, G;, H will be systems of all sequences U = {un} from

U defined by u, = 1, u, = b, and by the recurrence relations (for n = 1):

Uyt Upyyg =b*feou,,, +deu, whereb, d, f#0, F#1,
(d, b) = (d, ) =1;
Fiuy,o =bcu,  +deuy
Fiiu,,, =b-u,,, +du,, where (d, b) = 1;
Githyyp = d= Uy
Gy*Upy, =deu,, where d=1or d=-1;

H: Upyo = C° Upyq-
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It is obvious that F; C F and G; C G. Further, we define sequences a, b, c,
d,e, f = {u,} €U by:

a:u, =1for alln=>1 b:u, = {_1 if 7 is odd

1 if »n is even

iy = { 1 ifn=1 d:u = { 1 if n =1 or n is even
n -1 ifn>1 * Un -1 if n # 1 and n is odd
1 if n =1, 5 (mod 6)
. _ { 1 if 3/ n £ _)-1 if n = 2, 4 (mod 6)
€ lUn T -2 if 31 n FUn S92 if n = 3 (mod 6)
2 if nw = 0 (mod 6)

Let us denote 4 = {c, d, e, f}. Directly from the definitions we obtain:

1.1 Proposition

1. a, b,c,d, e, fED, i.e., ACD
2. a, b,c,der

3. a, b,e, fEU,

4. a, bEF, NG,

1.2 Proposition

Let u = {u,} €G. Then u €D if and only if u € G;.

Proof: Let u € D; then (u3, uy) = 1 and consequently u € G;. Let u € Gy;
then for kK 2 0 we get uy, ; =1, Uy, = by Uy, = *1, Uy = +b. Thus, for
i, § =21,

sy 1) = 1 if 7 is odd or j is odd
LAINE Ibl if 7 is even and j is even

and therefore, u € D.

1.3 Proposition

Let u = {u,} € . Then u € D if and only if u € {a, b, c, d}.

Proof: Let u € D; then (u,, u;) = (43, u,) =1 and we get |bl =1, lel =1,
and consequently u € {a, b, ¢, d}. The rest of the proposition follows from
1.1.

1.4 Proposition

Let u = {u,} € U, such that ¢, d # 0. Then, the following statements are
equivalent:

(i) (ui, uJ) = [u(h'])l for 1 < i, J < 4,
(ii) u €U, UF,.
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Proof: ©Let (i) be true. From (u,, u;z) = 1 we get (b, d) = 1. From uyluy
we get ble, b # 0. Therefore, there is an integer f # 0, such that ¢ = bf.
Since (u3, uy) = 1, we have (d, f) =1 and thus u € U; U F,.

Let U € U; UF,. Then us = d + b%f, u, = b(d + df + b2f2),where b, f # 0,
(d, b) = (d, f) = 1. Let p be a prime, plus and plu,. Obviously p/ b, and so
d+ b%f = 0 (mod p), d+ df + b2f? = 0 (mod p). Hence b%2f = 0 (mod p) and con-
sequently plf, pld, a contradiction. Thus (43, u,) =1 = lu;|l. The remaining
cases of (i) obviously hold.

2. THE SYSTEM OF SEQUENCES F

The following two results are easily proved by mathematical induction, in
the same way as for the Fibonacci numbers (cf. [4]).

2.1 Proposition

Let u = {u,} € F. Then for any k = 2, m 2 1 it holds

Upypm = Uglpey T d = Up Uy,

2.2 Proposition

Let u = {u,} €EF and k, m > 1 be integers. If klm, then uylu,.

2.3 Proposition

Let u = {u,} € F. Then the following statements are equivalent.

(1) (up, ug) =1

(i1)  (u, u,4y) =1 for all m =1
(iii) u €D

(iv) uer,

Proof: Clearly (iii) = (i) and (i)= (iv). Let (iv) be true. Let » be the
smallest positive integer such that (u,, U,,;;) # 1. Then r 2 2 and there ex-
ists a prime p such that plus, pluy,,. But .y, = bup + di,_;, and hence pld.
Now, it is easy to prove, by induction, that u, = pr-t (mod p), for all n > 1.
Hence, 0 = u, = b¥"! (mod p) so that plb, a contradiction, and (iv) = (ii) is
proved.

Now, let (ii) be true. We can assume that < > j > 1. Let g = (u;, uj).
Then from 2.2 we get u(i,ﬂlg» It is well known that there exist integers r, s
with, say, » > 0 and s < 0, such that (¢, J) = ri< + sj. Thus, by 2.1, we get

Upi = Ugyj+ (i, ) = Y-a)iti, p+1 T =) j-1%(z, j)°
But by 2.2, glucs)j>» 9gluprs, and by (ii), (g, U(-s)j- 1) = 1, so that gla’u(i,j).

If p is a prime, plg, pld, then plu; = bu;_, + du;_,, and so p|b. Thus, (u,,
uy) > 1, a contradiction. Hence, (g, d) =1 so that gluc, ; and (iii) is true.

3. THE SYSTEM OF SEQUENCES U,

If u = {u,} € U;, then directly from the definition we obtain
u; = d+ b%f, u, = b(d + df + b*f?)
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and
ug = d* + 2b%df + b2df? + bf3, 3)
where b, d, f#0, f# 1, and (d, b) = (d, f) = 1.

3.1 Proposition

Let u = {u,} € U;. Then the following statements are equivalent.

(1) uylug
(ii1) uy # 0 and f = 1 (mod lujyl)

Proof:

I: Let uzlug and let 0 = uy = d + b?f. Then ug = bd(d + b*f?) = 0, and
consequently, f = 1, a contradiction. Thus, from (i), it follows that ug # O.
II: Let us # 0. Since ug = bd(d + b?*f?) (mod lugl) and (bd, us) =1, we
have ujlug iff d + b2f%2 = 0 (mod |uzl). But d + b2f? = b2f(-1 + f) (mod |ugl),
and (f, uz) = (b, uz) =1, so that d + b%f% = 0 (mod |uszl) iff F =1 (mod lusl).

3.2 Proposition

Let u = {u,} € U,. Then the following statements are equivalent.

(1) Uy lUg
(ii) d+ df + b%f2 # 0 and £ = 1 (mod |d + df + b2F21)

Proof:
I: Let uylug and d + df + b?f? = 0. Then
u, =0 and ug = bdf(2d + b*fHu, = 0.

But both 2d + b?f%2 = 0 and u; = 0 lead immediately to a contradiction; thus,
from (i) it follows that d + df + b2f* # 0.

II: Let d + df + b?f% # 0. Clearly, ug = bdf(2d + b2f?)u; (mod |u,}) and
(df, d + df + b?f*) =1, and, from 1.4, we get (u;, u,) = 1. Hence, u,lu, iff
2d + b2f2 = 0 (mod |d + df + b%f%l). Trivially,

b2f2 = -d - df (mod Id + df + b2f2)
and thus,
2d + b2f% = 0 (mod |d + df + b2f?|) iff £ = 1 (mod |d + df + b%f?|).

3.3 Lemma

Let b,d, f # 0, f # 1 be integers such that (d, b)=(d, NH =1, d + b2f+#0,
and d + df + b%f% # 0.

Then £ = 1 (mod I|d + b2fl) and f =1 (mod |d + df + b2f*|) if and only if
one of the following cases occurs:

b=z, f=-1, d=-1 b=z, f=-2, d=1,5
b=tl, f=-3, d=5 b=1+%1, f=-5 d=17
b = =1, f+d=1 f=#b%, d=731+b*7 b*
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Proof: Sufficiency is easy to verify in all of the cases, SO WwWe prove
necessity. Let us denote x = d + b2f, y =d+ df + b>f*. Clearly, (zx, y) =1,
x =y (mod |f]), and

y =x+ fo - bf (%)
oyl (f - D. (3
o) Suppose f > 1.
Then x = y (mod f), and from (5) we get lxl, Iyl < f.

cay) If 2, y >0 or x, y <0, then x = y, and hence b*> = d + b*f? So bld
and we get b = *1, f+ d = 1.

a,) <0, y >0 is impossible because of (4).

ag) If x>0, y <0, then y = x - f, where 0 < x < f.
From (4) we get = = b?-1 and from (5) we get a(f - 2)If -1. If x < (f-1)/2,
then f — x > (f-1)/2, and hence f - x = f - 1. But then % =1=5* -1, a
contradiction. If x > (f-1)/2, then x = f- 1. Thus, we get f = b?, d = -1 +
b? - b*.

R) Suppose f < 0.

Denote ¢ = -=f. Then & = y (mod t), and from (5) we get lzl, lyl < ¢ + 1.

;) If lxl =t + 1or |yl =t+ 1, then there are four possibilities:

Bi) x=f -1,y =1z%1=f%-p2f 1.
From 1 = f2 - p2f -1, we get b = #1, f=-1, d = -1, and -1 = f2 - p2f - 1 is
impossible, since then we get f = b2 > 0, a contradiction.

Bi,) x=~(F-1), y=1%1l=-f2-Dp2f+ 1.
From 1 = -f% - b2Ff + 1, we get f=-b%, d =1+ b? + b*, and from -1 = -f2 -
b2°f + 1, we get b = t1, f = -2, d = 5.

B15) x=%1, y=Ff-1=1%1 % f- b’f both lead to a contradiction.

Br,) =%, y=-(f~-1) =zl =z f- b*f.
From -f + 1 =1 + f - b%f, we get b? = 2, a contradiction, and from -f + 1 =
-1 - f - b°f, we get b = %1, f=-2, d= 1.

82) If lxl = ¢ or |yl = ¢ and lz|, |yl # ¢ + 1, then ¢|¢t + 1, and hence
f=-1. We gethb =21, f=-~1, d= 2, which is a special case of b = 21, f +
d=1.

I+

I+

B,) If lxzl, lyl < ¢, then we have the following possibilities:

Bs1) % y >0 or x, y<0. Then x =y, and in the same way as in o,), we
get b =21, f+d=1.

B3s) <0, y>0 is impossible because, then, x = y + f, and we get y =
b? - f -1, so that = b2 - 1 » 0, a contradiction.

Bys) >0, y<0. Theny=x-t=x+Ff, and hence x =h* + 1. From
(5), we get (¢t - x2)|It + 1, where 0 < x < tand 0 < ¢t - & < ¢.

If < (¢ +1)/2, then ¢ -a > (¢t - 1)/2. From t - x = t/2, we get a contra-
diction, and hence ¢ - x = (¢t + 1)/2, x = (t - 1)/2. Now, from (¢t - 1)/2 -
(t+ 1)/21t+ 1, we get (¢ - 1)/212, and consequently b = *1, f =-5, d = 7. If
x 2 (¢t + 1)/2, then, similarly as above, we get b = t1,f =-3, d = 5.
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3.4 Proposition

Let u = {u,} € U,. Then the following statements are equivalent.
(1) usluy,

(i1) g # 0 and d* + 3b%df* + b*f* = 0 (mod |ugl)
Proof:

I: Let usluyo and 0 = ug = d> + 2b2df + b2df? + b*f%. Then u,, = d(d* +
3b%df? + b*f"u, = 0. If u, =0, then 0 = d + df + b2f% = d(1 + f) + b*f? and
from (3) we get us(l + )2 = -b*f% # 0, a contradiction. Thus, we have d? +
3b2df? + b*f* = 0. But then d*> = -3b2df% - b"f* and from 0 = uy we get b2f? =
-2d, which is a contradiction, since (d, b) = (d, f) = 1.

II: Let us # 0. Then

Uy, = d(d* + 3b%df* + b*fu, (mod lugl).
It is easy to prove that (u,, u#s) =1 and (d, ug)=1. Thus, uglu,, if and only
if d® + 3b%df% + b*f* = 0 (mod |usl).

3.5 Proposition

Let u = {u,} € U;. Then the following statements are equivalent.
(1) uzlug, uylug, uslug,
(ii) u€eD
(iii) u e {a, b, e, f}
Proof: Clearly (iii) = (ii) and (ii) = (i). Let (i) be true. According

to 3.1 and 3.2, just the cased described in 3.3 can occur for the integers b,

d, f.
a) If b=1, f+d=1, then u = a;
If b =-1, f+d=1, then u = b;
Ifb=1, f=-1, d=-1, then u = e;
If b=-1, f=-1, d=-1, thenu = f.
B) If f=0b2%, d=-1+ b% - b*, then

us = -b® + b* - 2% + 1

and
d? + 3b2df? + p*f* = b2 - 3p10 + 4p® - 5P + 3p% - 2b% + 1
(=b® + b - 2b% + 1) (-b® + 2b* + 1) + b°.

Obviously, (-b® + b* - 2b%2 + 1, b®) =1 for every integer b. So, from 3.4, we
get -b® + p* - 2b2+ 1= %1, and thus 1 = b? = f, a contradiction.

v) If f=-b%, d=1+ b%+ b*, then
us = b® + b% + 2p% + 1

and
d® + 3b%df% + bUF*=b2% + 3b*° + 4b® + 5B% + 3b* + 2b% + 1
= (b® + b* + 2b% + 1) (B® + 2b") + b* + 2b% + 1.
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But b® + b* + 2b% + 1 > b* + 2b%2 + 1 > 0 for every nonzero integer b, which
contradicts 3.4.

Y) It is easy to prove by direct calculation that the remaining cases of
Lemma 3.3 also contradict 3.4.

4. MAIN THEOREM

4.1 Theorem
It holds that D = AU F, UG,.
I: Letu€&€D. If ¢, d# 0 then,byl.4, 3.5, and 1.1.4, u € F, or u € 4;

if ¢ =0, thenu € ¢ and, by 1.2, u € G;; if d = 0, then u € H and, by 1.3 and
1.1.4, UEF oru€id. Hence, Uu€ 4 UF, UGQG,.

II: Let u€ A UF, UG,. Then, by 1.1.1, 2.3, and 1.2, we get u € D,

4.2 Corollary

All the second-order, strong-divisibility sequences are precisely all inte-
gral multiples of sequences from D, i.e., of the following sequences:

c={1, -1, -1, -1, ...}

d={1,1, -1, 1, -1, ...}

e={1,1,-2,1, 1, -2, ...}

f={1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, ...}

u, =1, wu, =b, Uyyp = b Uy +deu, where (d, b) =1
u, =1, u, =b, U,tp = d* U, where d = *1.

4.3 Remark

It is easy to prove that the systems A, F,, G, satisfy
ANF, =¢, ANG =¢, F, NG ={a, b, g, h},
where ¢ = {1, 0, 1, 0, ...}, and # = {1, 0, -1, 0, 1, O, -1, O, ...}.
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