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1. INTRODUCTION 

In [3]s the first author obtained an expression for the number of equiva-
lence classes induced on the set of ft x ft Latin squares under row and column 
permutations. The first purpose of this paper is to point out that the results 
of [3] do not hold for all n, but rather that they hold only if n is a prime.* 
The second purpose of this paper is, in the case of prime ft, to extend the re-
sults of [3] to three-dimensional and finally to ft-dimensional Latin hyper cubes. 
This is done in Sections 3 and 4. 

2. LATIN SQUARES 

A Latin square of order n is an n x n array with the property that each row 
and each column contains a permutation of the integers 1, 2, ..., ft. In [3], 
two Latin squares were said to be equivalent if one could be obtained from the 
other by a permutation of the rows and another possibly different permutation 
of the columns, while a Latin square was said to be stationary if it remained 
invariant under some nontrivial row and column permutations. Let G be the 
group of all permutations of rows and columns so that G is isomorphic to Sn x Sn 
where Sn is the symmetric group on ft letters. A Latin rectangle is an m x n 
array (m < ft) in which each row contains a permutation of 1, 2, . .., ft and no 
integer occurs more than once in any column. Denote the number of m x n Latin 
rectangles by L(m5 "ft) . 

*We now correct two errors that occur in [3]. In the proof of Lemma 1.2 of 
[3] it is assumed that if d divides n then the expression L(kd+1, n)/L(kd, ft) 
is always an integer for k = 0, 1, ..., nld - 1. That this is not always the 
case is easily seen in the case when n = 4. Let d = 2 and k = ls and consider 
L(3, 4)/L(2, 4). It is easily checked (see, e.g., [2]) that L(3, 4) = 4!3!4, 
while L(2, 4) = 4!9, so that L(3, 4)/L(2, 4) = 8/3. Lemma 1.2 of [3] is cor-
rected in our Lemma 1.2. 

In Theorem 2 of [3], it is indicated that, if n is prime, then there are 
(n - 2)! classes of stationary Latin squares each of which contains (n - 1)! x 
(n - 2)! elements. While the proof of the theorem is correct, the statement 
contains a typographical error and should read "For n prime, there are (ft - 2)! 
equivalence classes of stationary Latin squares, each of which contains ft! x 
(ft - 1)! elements." 
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It is now easy to prove 

Lemma 1.2 

Let II = (11̂ , IIe) be a permutation of G such that both VLT and IIe consist of 
either vp 1-cycles or 1 p-cycle, where p is a prime. Then there are either 
L(p9 p) or L(l, p) Latin squares invariant under II. 

Proof: Clearly, if IIr and Tl0 both consist of p 1-cycles, then all Latin 
squares of order p are invariant while in the remaining case the first row can 
be chosen in p! = L(l, p) ways. Once the first row is completed, the remain-
ing rows are uniquely determined by Ti0. 

We now prove 

Theorem 1 

If p is a prime, then permutations of rows and columns induce 

HP, P) , (P - Di 
(p!)2 P 

equivalence classes in the pth-order Latin squares. 

Proof: Burnsidefs lemma gives the number of classes as 

(1/|G|) X>01) 
JieG 

where (̂11) is the number of squares invariant under II, from which the theorem 
follows. 

It may be noted that, if £p denotes the number of reduced Latin squares of 
order p, then L(p, p) =pl(p - 1)!£p so that the number of equivalence classes 
thus reduces to (£p + (p - l)!)/p. Moreover, the values of £p are known if 
p < 9 (see [1]). 

3. LATIN CUBES 

In this section we extend the results of [3] to Latin cubes of prime order. 
A Latin cube C of order p i s a p x p x p array with the property that each of 
the p3 elements oi^ is one of the numbers 1, 2, ..., p and {ci^} ranges over 
all of the numbers 1, 2, ..., p as one index varies from 1 to p while the 
other two indices remained fixed. Two Latin cubes of order p are equivalent 
if one can be obtained from the other by a permutation II = (np, IIC, IÎ ) , where 
IÎ  is a permutation of the rows, IIc is a permutation of the columns, and II£ is 
a permutation of the levels of C. Let G denote the group of all permutations 
so that G is isomorphic to Sp. We first prove 

Lemma 3«1 

Given three partitions of a prime p, each into at most p - 1 parts and not 
all into a single part, it is possible to select one part, say s^9 from each 
partition so that the least common multiple of two of the s^s is less than 
lcm(s1, s29 s3)• 
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Proof: Number the partitions so that the first has more than one part and 
select as s1 some part other than 1 from the first partition. Since p is prime, 
from the second partition we may select as s2 some part such that (s2, sx) = 1. 
Similarly, select s3 from the third partition so that (s3, sj = 1 and, hence, 
lcm(s2s s3) < lcm(sl5 s2, s 3 ) . 

Corresponding to Lemma 1 of [3], we have 

Lemma 3-2 

Let IT = (lip, Jl0, 11̂ ) G G. A Latin cube of order p a prime is nontrivially 
invariant under II only if each component of II is either a p-cycle or the iden-
tity and at least two of the components are p-cycles. 

Proof: The permutation II induces three partitions of p and if s. is a part 
from the it h partition for i = 1, 2, 3, we may assume that 

lcm(s1, s2) < lcm(s1, s2, s 3 ) . 

If TT = (IT1j II2, n3) , let (&n&i2' • • &isi) be the corresponding cycle of the per-
mutation 11̂ . Tracing the effect of the cycles beginning with position ( & n , 
£2i5 &31) w e get, after applying the permutation II <i=lcm(s1, s2) times that 

(361 1, &21> ^ 3 1 ' "*" ^ 1 2 ' ^ 2 2 ' ^ 3 2 ' "̂  '' "*" ™ 11 > ^ 2 1 ' ^ 3 J ^ S 

where £3^ ^ £ 3 1 since lcm(s19 s2, s3) >lcm(s 1, s2) . For invariance, the ele-
ments in these positions must be equal, a contradiction of the Latin property. 
Hence all of the s^ must be 1 or p. If only one component contained a p cycle 
while the other two contained the identity, clearly the cube cannot be invari-
ant without contradicting the Latin property. 

Let L(p, p, p) denote the number of Latin cubes of order p a prime. Clear-
ly, if IT is the identity, then L(p,p, p) cubes are invariant under II, while 
there are 3[(p- l)!] 2 permutations II = (lip, Hoi IT£) with the property that one 
of the components is the identity, while the other two consist of p-cycles. 
Moreover, each such permutation leaves L(l, p, p) = L(p, p) cubes invariant. 
In order to count the number of cubes invariant under IT, where lip, IIC, and II £ 
all consist of p-cycles, we need the following definitions and lemmas. 

Def i n i t ion 3-1 

A transversal of a Latin square of order p is a set of p cells, one in each 
row and one in each column such that no two of the cells contain the same sym-
bol. 

Definition 3.2 

A Latin square of order p is in diagonal transversal form if it consists 
of p disjoint transversals, one of which is the main diagonal and the remaining 
transversals are parallel to it, i.e., with addition mod p, cells (i, j) and 
(i + 1, j + 1) are always in the same transversal. 

Let dp denote the number of Latin squares of order p in diagonal transver-
sal form. We can now prove 
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Lemma 3°3 

A Latin cube of order p a prime is invariant under a permutation II = (Jlrs 
Jlc$ IÎ ) where J[r, JlcS and n£ are p-cycles only if level one consists of p dis-
joint transversals. 

Proof: Let J[r = 01r2„..rp) and IIc = (c?1c2. . ,cp) . Consider the elements 
in the p positions (P15C?1S •) to be some permutations of 1, 2, ..., p. Repeat-
ed applications of II carries these positions into the positions (r2, £2, a) , 
(p3s c3s •)> ... . Since n£ is a p-cycle, each element occupies the position 
in level one in exactly one of the p sets of positions, and thus the elements 
in positions (P1S O19 1), (2*2, <?2? 1), . .., (rp, cp9 1) form a transversal. 
Similarly, successive applications of II to the p positions (r2> c19

 9 ) fixes 
(r3, c2, O , . .., (̂ 15 cp, •) so that (r2, c1$ 1) , . .., (P15 cps 1) is a sec-
ond transversal in the first level. It thus follows that level one consists 
of p disjoint transversals. 

Lemma 3»^ 

For p a prime there are dp Latin cubes of order p invariant under a permu-
tation II = (IIr, IIC, n£) where lips IIe, and II£ are p-cycles. 

Proof: Suppose np = (H2...ip)s U0 = (lj2...jp)s and II£ = (lfc2 . . . A:p). By 
the previous lemma5 a cube will be invariant under II only if level one consists 
of the disjoint transversals 

T1 (1, 1), (i2, j 2 ), ..., (ip, j p ), 

^2 C1* J2)» (^2» J3>» •••» (^p» 1)> 

•̂  p (I> <Jp) 2 \^2S ' * •*•» ("Z-ps 0p-\) • 

Rearrange the rows and columns by using the permutations 

( i V : : : ? ) -d (1 •£:::£) 
so that level one now consists of the transversals 

T± (1, 1), (2, 2), ..., (p, p), 

T2 (1, 2), (2, 3), ..., (p, 1), 

(3.1) 

LP (1, p), (2, 1), ..., (p, p - 1). 

Hence, level one is in diagonal transversal form so that the number of cubes 
invariant under II is less than or equal to dp* 

Similarly, if we consider a Latin square of order p in diagonal transversal 
form and apply the permutations 

(} 2 ••• ? ) and (| 2 ••• P) 
Vl t2 ... ^p/ Vl Jz ••• 3 J 
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we obtain a square with p disjoint transversals as in (3.1). If we use this 
square as level one of a. cube and allow 11= (IIr, EQ5 Eg) to fix the remaining 
levels we will have constructed a cube invariant under II so that dp is no lar-
ger than the number of cubes invariant under IT. 

It may be of interest to note that for p = 2, 3, and 5, dp- (p - 2)p!. For 
p prime, one can construct a square in diagonal transversal form by choosing 
the first row in one of p! ways and then rotating the row one position to the 
left p - 1 times to obtain the remaining rows. By making the p - 1 rotations 
each two positions to the left, one obtains a second diagonal transversal square 
with a given first row. Similarly, for left rotations of any fixed size up to 
and including p - 2 positions, a new diagonal transversal square is obtained 
so that dp ^ (p - 2)pl. If p = 7, the following square 

1 2 3 4 5 6 7 
2 3 7 5 6 1 4 
7 5 4 6 1 2 3 
4 1 6 2 3 7 5 
3 6 5 1 7 4 2 
6 7 2 3 4 5 1 
5 4 1 7 2 3 6 

is not obtained by a rotation of the first row so that d7 > 5 • 7!* Moreover, 
in general3 if p ^ 7, we have dp > (p - 2)p!. It would be of interest to have 
an exact formula for dp for all p. 

We now apply Burnside's lemma to prove 

Theorem 3°1 

Permutations of rows, columns, and levels induce 

NP =JfT)3[L(P> P> P} + 3 ( (P - 1>!)2£(P- P> + «P - DD'dp] 
equivalence classes in the set of Latin cubes of order p a prime. 

If Cp is the number of reduced Latin cubes of order ps then 

L(p, p, p) = pl(p - l)!(p - l)lcp5 

so that Np may be written in the form 

Np = -j~[pcp + 3p !£ p + dp]. 

In [4] it was shown that c2 = o3 = 1 and c5 = 40,246. Therefore, it is easily 
checked that N2 = N3 = 1, while tf5 = 1774. 

4. HYPERCUBES 

In this section we extend our results concerning squares and cubes of prime 
order to n-dimensional hypercubes of prime order. A Latin hypercube A of 
dimension n and order p i s a p x p x •.. x p array with the property that each 
of the pn elements a^ in is one of the numbers 1, 2, ..., p and {ai1.,a in} 
ranges over all of the numbers 1, 2, . .., p as one index varies from 1 to p, 
while the remaining indices are fixed. Let L(n; p) be the number of n-dimen-
sional Latin hypercubes of order p. We may generalize the proof of Lemma 3.1 
to obtain 
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Lemma 4.1 

Given n partitions of a prime p, each into at most p - 1 parts and not all 
into a single part, it is possible to select one part S{, from each partition 
so that the least common multiple of n - 1 of the s-i' s is less than lcm(s1, s2, 
...5 sn). 

Let G be the group that permutes n-dimensional hypercubes by permuting each 
component so that G is isomorphic to Sp. Along the same lines as Lemma 3.2, we 
may prove 

Lemma 4.2 

Let IT = (II1, ..., IIn) E G . A Latin hypercube of order p a prime is non-
trivially invariant under IT only if each IÎ  is a p-cycle or the identity and 
at least two of the II ̂  are p-cycles. 

Def i n i t ion 4.1 

A hypertransversal of an 7^-dimensional Latin hypercube of order p is a col-
lection of p cells (i\, ..., i„), k = 1, ..., p, such that the corresponding p 
elements are distinct and among the p n-tuples, the set of p elements in each 
of the n coordinates is a permutation of 1, 2, ..., p. 

By extending the argument used in the proof of Lemma 3.3 to n dimensions, 
we may prove 

Lemma 4.3 

An n-dimensional Latin hypercube of order p a prime is invariant under a 
permutation II = (nis ..., II„) , where J[19 ..., II „ are all p-cycles only if the 
hypercube possesses a subhypercube of dimension n - 1 that is composed of p n ~ 
disjoint hypertransversals. 

Defini t ion 4.2 

An n-dimensional Latin hypercube of order p is in parallel hypertransversal 
form if it consists of p n _ 1 disjoint hypertransversals 

(1, i2, ..., in) , (2, i2+ 1, ..., in+ 1), . .., (p, i2 + p- 1, . . ., in + p- 1), 

where (i2, ..., in) ranges over all p n - 1 (n - l)-tuples and the additions are 
mod p. 

Let d(n; p) denote the number of n-dimensional Latin hypercubes in paral-
lel hypertransversal form. Analogous to Lemma 3.4, we can prove 

Lemma 4.4 

For p a prime there are d(n~ 1; p) Latin n-dimensional hypercubes of order 
p invariant under a permutation II = (II1, ..., IIn) , where each II ̂  is a p-cycle. 

Theorem 4.1 

Permutations of each coordinate induce 
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Np = l 

(pir L(n; p) + E (l)((P ~ ±)}-)kL(k; p) + ((p - !)!)»<*(« - 1; p 

equivalence classes in the set of n-dimensional Latin hypercubes of order p a 
prime. 

Proof: Clearly, L(n; p) hypercubes are invariant under the identity and 
there are 

(2K DO* 
permutations II = (TI15 . .., Jln) , where n - k of the IT,- are the identity. More-
over, each of these fixes L(k; p) /c-dimensional hypercubes of order p. Apply-
ing Lemma 4.4 and Burnside's lemma yields the result. 
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