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1. INTRODUCTION

In [3], the first author obtained an expression for the number of equiva-
lence classes induced on the set of n x n Latin squares under row and column
permutations. The first purpose of this paper is to point out that the results
of [3] do not hold for all n, but rather that they hold only if #n is a prime.”*
The second purpose of this paper is, in the case of prime #n, to extend the re-
sults of [3] to three-dimensional and finally to n-dimensional Latin hypercubes.
This is done in Sections 3 and 4.

2. LATIN SQUARES

A Latin square of order »n is an »n X n array with the property that each row
and each column contains a permutation of the integers 1, 2, ..., n. In [3],
two Latin squares were said to be equivalent if one could be obtained from the
other by a permutation of the rows and another possibly different permutation
of the columns, while a Latin square was said to be stationary if it remained
invariant under some nontrivial row and column permutations. Let G be the
group of all permutations of rows and columns so that G is isomorphic to S, x S,
where S, is the symmetric group on n letters. A Latin rectangle is anm x n
array (m < n) in which each row contains a permutation of 1, 2, ..., »n and no
integer occurs more than once in any column. Denote the number of m x »n Latin
rectangles by L(m, 'n).

*We now correct two errors that occur in [3]. In the proof of Lemma 1.2 of
[3] it is assumed that if J divides » then the expression L(kd+ 1, »n)/L(kd, n)
is always an integer for k =0, 1, ..., n/d - 1. That this is not always the
case is easily seen in the case when n = 4. Let d = 2 and kK = 1, and consider
(3, 4)/n(2, 4). 1t is easily checked (see,e.g., [2]) that L(3, 4) = 41314,
while 1,(2, 4) = 4!9, so that [(3, 4)/L(2, 4) = 8/3. Lemma 1.2 of [3] is cor-
rected in our Lemma 1.2.

In Theorem 2 of [3], it is indicated that, if » is prime, then there are
(n - 2)! classes of stationary Latin squares each of which contains (n - 1)! x
(n - 2)! elements. While the proof of the theorem is correct, the statement
contains a typographical error and should read "For » prime, there are (n - 2)!
equivalence classes of stationary Latin squares, each of which contains n! x
(n - 1)! elements."”
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It is now easy to prove
Lemma 1.2

Let II = (II,, II.) be a permutation of G such that both II,, and II, consist of
either p l-cycles or 1 p-cycle, where p 1is a prime. Then there are either
L(p, p) or L(l, p) Latin squares invariant under II.

Proof: Clearly, if II,, and I, both consist of p l-cycles, then all Latin
squares of order p are invariant while in the remaining case the first row can
be chosen in p! = L(l, p) ways. Once the first row is completed, the remain-
ing rows are uniquely determined by II,.

We now prove
Theorem 1

If p is a prime, then permutations of rows and columns induce

L(p, p) + (p - 1)!
(p!)? P

equivalence classes in the p*h-order Latin squares.

Proof: Burnside's lemma gives the number of classes as
/
/
(1/]e) 2o
nee

where P(II) is the number of squares invariant under II, from which the theorem
follows.

It may be noted that, if %p denotes the number of reduced Latin squares of
order p, then L(p, p) =p!(p - 1)!%p so that the number of equivalence classes
thus reduces to (&p + (p - 1)!)/p. Moreover, the values of {£p are known if
p S9 (see [1]).

3. LATIN CUBES

In this section we extend the results of [3] to Latin cubes of prime order.
A Latin cube C of order p is a p X p X p array with the property that each of
the p? elements c¢;j; is one of the numbers 1, 2, ..., p and {c )} ranges over
all of the numbers 1, 2, ..., p as one index varies from 1 to p while the
other two indices remained fixed. Two Latin cubes of order p are equivalent
if one can be obtained from the other by a permutation II = (II,, II,, IIy), where
NIy is a permutation of the rows, Il is a permutation of the columns, and Il is
a permutation of the levels of C. Let G denote the group of all permutations
so that G is isomorphic to S;. We first prove

Lemma 3.1
Given three partitions of a prime p, each into at most p - 1 parts and not
all into a single part, it is possible to select one part, say s;, from each

partition so that the least common multiple of two of the s;'s is less than
lem(s,s 855 83)-
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Proof: Number the partitions so that the first has more than one part and
select as s; some part other than 1 from the first partition. Since p is prime,
from the second partition we may select as s, some part such that (s,, s1) =1.
Similarly, select s3 from the third partition so that (s;, s;) = 1 and, hence,
lem(s,, s3) < lem(sy, Sy, S3).

Corresponding to Lemma 1 of [3], we have
Lemma 3.2

Let II = (II,, I, My) € G. A Latin cube of order p a prime is nontrivially
invariant under Il only if each component of Il is either a p-cycle or the iden-

tity and at least two of the components are p-cycles.

Proof: The permutation Il induces three partitions of p and if s, is a part
from the 7 partition for ¢ = 1, 2, 3, we may assume that

lcm(sl, sz) < lcm(sl, Sy 83).

If m= (I, I,, I3, let (L;;2;,...%45,) be the corresponding cycle of the per-—
mutation II;. Tracing the effect of the cycles beginning with position (£33,
251, 231) we get, after applying the permutation I d=lem(s,, s,) times that

(Ry1s Rp1s R39) 7 (Rqgs Rons 230) > oo = (s £y05 L34)s

where 235 # %3, since lem(s;, S,, S;) > lem(s;, s,). For invariance, the ele-
ments in these positions must be equal, a contradiction of the Latin property.
Hence all of the s; must be 1 or p. If only one component contained a p cycle
while the other two contained the identity, clearly the cube cannot be invari-
ant without contradicting the Latin property.

Let L(p,p, p) denote the number of Latin cubes of order p a prime. Clear-
ly, if 1T is the didentity, then L(p,p, p) cubes are invariant under II, while
there are 3[(p-—1)!]2 permutations II = (II,, ., 1I,) with the property that one
of the components is the identity, while the other two consist of p-cycles.
Moreover, each such permutation leaves L(l, p, p) = L(p, p) cubes invariant.
In order to count the number of cubes invariant under II, where II,, II,, and I
all consist of p-cycles, we need the following definitions and lemmas.

Definition 3.1

A transversal of a Latin square of order p is a set of p cells, one in each
row and one in each column such that no two of the cells contain the same sym-
bol.

Definition 3.2

A Latin square of order p is in diagonal transversal form if it consists
of p disjoint transversals, one of which is the main diagonal and the remaining
transversals are parallel to it, i.e., with addition mod p, cells (%, J) and
(z+1, g+ 1) are always in the same transversal.

Let dp denote the number of Latin squares of order p in diagonal transver-—
sal form. We can now prove
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Lemma 3.3

A Latin cube of order p a prime is invariant under a permutation II = (II,,
e, Ty) where I, II,, and II; are p-cycles only if level one consists of p dis-
joint transversals.

Proof: Let I, = (ryry...7p) and I, = (ci¢,...¢p). Consider the elements
in the p positions (r;,c;, *) to be some permutations of 1, 2, ..., p. Repeat-—
ed applications of Il carries these positions into the positions (r,, ¢,, *),
(r3, ¢35, *)5 ... . Since Il is a p-cycle, each element occupies the position
in level one in exactly one of the p sets of positions, and thus the elements
in positions (r;, e, 1), (r,, ¢,, 1), ..., (rp, ¢p, 1) form a transversal.
Similarly, successive applications of Il to the p positions (r,, c¢,, *) fixes
(r3s Chs *)s veuy (7q, Cps *) so that (r,, c¢;, 1), ..., (ry, ¢p, 1) is a sec-
ond transversal in the first level. It thus follows that level one consists
of p disjoint transversals.

Lemma 3.4

For p a prime there are dp Latin cubes of order p invariant under a permu-
tation II = (I, H,, M) where N,, I,, and Il are p-cycles.

Proof: Suppose M, = (1Z,...%2p), I, = (1j,...Jp), and Ty = (lk,...kp). By

the previous lemma, a cube will be invariant under II only if level one consists
of the disjoint transversals

Tl (1’ l), (iz’ jz)’ e 00y (ip, jp)’

T, (1, 32)s (225 da)s +ovs (Zps 1),
. . (3.1)

Tp (1: jp): (izﬁ l): ey (ip’ jp-l)‘

Rearrange the rows and columns by using the permutations

12, oot dp Lz oo dy)
(1% p) and (7 %0 b

so that level one now consists of the transversals

Tl (l, 1), (2: 2): e ey (P, p),
T, (L, 2), (2, 3), ..y (ps 1),

Tp (1: p): (2’ 1)9 LI ] (p, p - 1)-
Hence, level one is in diagonal transversal form so that the number of cubes
invariant under II is less than or equal to djp.

Similarly, if we consider a Latin square of order p in diagonal transversal
form and apply the permutations

G2 k) e (7007
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we obtain a square with p disjoint transversals as in (3.1). If we use this
square as level one of a cube and allow II= (I, II;,, Iy) to fix the remaining
levels we will have constructed a cube invariant under II so that dp is no lar-
ger than the number of cubes invariant under II.

It may be of interest to note that for p = 2, 3, and 5,(ip= (p - 2)p!. For
p prime, one can construct a square in diagonal transversal form by choosing
the first row in one of p! ways and then rotating the row one position to the
left p - 1 times to obtain the remaining rows. By making the p - 1 rotations
each two positions to the left, one obtains a second diagonal transversal square
with a given first row. Similarly, for left rotations of any fixed size up to
and including p - 2 positions, a new diagonal transversal square is obtained
so that dp 2 (p - 2)p!. If p =7, the following square

1234567

2375614

7546123

4162375

3651742

6723451

5417236
is not obtained by a rotation of the first row so that d, > 5 ¢ 7!. Moreover,
in general, if p > 7, we have dp > (p - 2)p!. It would be of interest to have

an exact formula for dp for all p.
We now apply Burnside's lemma to prove
Theorem 3.1

Permutations of rows, columns, and levels induce

. =(—p%F[L(p, P, p) + 3((p - DND2L(p, p) + ((p - 1)1)%dp]

N
equivalence classes in the set of Latin cubes of order p a prime.

If Cp is the number of reduced Latin cubes of order p, then
L(p, ps p) =pl(p - DI(p - Dlcy,
so that N, may be written in the form

Np =-§;[pcp + 3p!, + dpl.

In [4] it was shown that ¢, = ¢; = 1 and c¢5 = 40,246. Therefore, it is easily
checked that NV, = N, = 1, while Ny = 1774.

L, HYPERCUBES

In this section we extend our results concerning squares and cubes of prime
order to #n-dimensional hypercubes of prime order. A Latin hypercube 4 of

dimension #n and order p is a p x p x ++» x p array with the property that each
of the p7” elements Ail s iy is one of the numbers 1, 2, ..., p and {ail...iJ
ranges over all of the numbers 1, 2, ..., p as one index varies from 1 to p,

while the remaining indices are fixed. Let L(n; p) be the number of n-dimen-
sional Latin hypercubes of order p. We may generalize the proof of Lemma 3.1
to obtain
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Lemma 4.1

Given »n partitions of a prime p, each into at most p - 1 parts and not all
into a single part, it is possible to select one part s; from each partition
so that the least common multiple of n- 1 of the s;'s is less than lem(s,, s,,

o5 Sp).

Let G be the group that permutes n-dimensional hypercubes by permuting each
component so that G is isomorphic to S;. Along the same lines as Lemma 3.2, we
may prove

Lemma 4.2

Let I = (II;, ..., II;) €G. A Latin hypercube of order p a prime is non-
trivially invariant under Il only if each II; is a p-cycle or the identity and
at least two of the II; are p-cycles.

Definition 4.1

A hypertransversal of an n-dimensional Latin hypercube of order p is a col-
lection of p cells (if, e iS), k=1, ..., p, such that the corresponding p
elements are distinct and among the p #n-tuples, the set of p elements in each
of the »n coordinates is a permutation of 1, 2, ..., p.

By extending the argument used in the proof of Lemma 3.3 to n dimensions,
we may prove

Lemma 4.3

An n-dimensional Latin hypercube of order p a prime is invariant under a
permutation II = (I, ..., I,), where I, ..., II,, are all p-cycles only if the
hypercube possesses a subhypercube of dimension n - 1 that is compqsed of p”'z

disjoint hypertransversals.

Definition 4.2

An n-dimensional Latin hypercube of order p is in parallel hypertransversal
form if it consists of p”'l disjoint hypertransversals

(Ly Zys vnes Zu)s (2, 2+ 1, 0iesint ), oo (P i2+p-1,...,in+p—1),

where (Z,, ..., %,) ranges over all p"‘l (n - 1)-tuples and the additions are
mod p.

Let d(n; p) denote the number of n-dimensional Latin hypercubes in paral-
lel hypertransversal form. Analogous to Lemma 3.4, we can prove

Lemma 4.4

For p a prime there are d(n- 1; p) Latin n-dimensional hypercubes of order
p invariant under a permutation Il = (Hl, Cees Hn), where each Hi is a p-cycle.

Theorem 4.1

Permutations of each coordinate induce
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n-1
N, = (p{)” liL(n; P+ 3 (Z)((p - DORLR; p) + ((p - DDA - 1 ;J

k=2

equivalence classes in the set of n-dimensional Latin hypercubes of order p a
prime.

Proof: Clearly, L(n; p) hypercubes are invariant under the identity and
there are

(%)@ - ok

permutations I = (M, ..., I,), where n - k of the II; are the identity. More-
over, each of these fixes L(k; p) k-dimensional hypercubes of order p. Apply-
ing Lemma 4.4 and Burnside's lemma yields the result.
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