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In [1], Andrews proves that the number of consecutive triples of quadratic
residues, n(p), is equal to p/8 + Ep, where |Ep| < (1/4)Vp + 2. In addition in
[1], it is proved® that for p = 3 (mod 4), IEp] < 2.

In this note, m(p) will denote the number of consecutive triples of quad-
ratic nonresidues. In addition to topics related to those presented in [2],
n(p) and m(p) will be determined for all odd primes. Also, the number of tri-
ples a, a+ 1, a + 2 will be determined for which

B e () n m ()

where €, n, and vV each take one of the values *1. Finally, an elementary proof
of Gauss's "Last Entry" will be presented.

In [2], the decomposition of the integers 1, 2, 3, ..., p — 1 into cells is
developed as follows: these integers are partitioned into an array according
to whether the consecutive integers are (or are not) quadratic residues. For
example, for p = 11, the quadratic residues are 1,3, 4,5, 9; hence, the array
is

1 2 3, 4, 5 6, 7, 8 9 10.

The following are also defined in [2]: a singleton is an integer in a sin-
gleton cell, e.g., 2; a left (right) end point is the first (last) integer in
a nonsingleton cell, e.g., 3 (5); and an <nterior point is an integer, not an
end point, in a nonsingleton cell, e.g., 4.

Furthermore, as in [2], the following notation will be used: s, e, and 7
will denote the numbers of singletons, left end points (or right end points),
and interior points, respectively. Values for s, e, and 7 are given in [2],
and these values will be cited later. Quadratic residue and quadratic nonresi-
due will be denoted by gr and gnr, respectively. The subscript r (n) will be
used with &, e, and © to denote the appropriate number of quadratic residues
(nonresidues). For example, for p = 11, s, = 2 and ¢, = 1.

Lemma 1
For p an odd prime, n(p) = %, and m(p) = %,, so that n(p) + m(p) = <.

Proof: The middle integer, &, of either type of triple certainly cannot
be a singleton or an end point; hence, & must be an interior point. Now, if
Ays Ay ..., Qp are the consecutive interior points of some cell, then there
are precisely k consecutive triples: a, ay, @,3 Ay, Ay Qg3 +--3 Agx_15 Axs D
where a and b are the left and right end points, respectively, of this cell.

*This case was solved by E. Jacobsthal, "Anwendungen einer Formel aus der
Theorie der Quadratischen Reste,' Dissertation (Berlin, 1906), pp. 26-32.

1985] 133



ON THE DISTRIBUTION OF CONSECUTIVE TRIPLES OF QUADRATIC RESIDUES
AND QUADRATIC NONRESIDUES AND RELATED TOPICS

Hence, there is a one-to-one correspondence between the number of triples (of
either type) and the number of interior points (of the same type), and the con-
clusion follows.

The next lemma is proven in [2].

Lemma 2

The results in the following table hold.

(p =) 8k + 1 8k + 3 8k + 5 8k + 7
. p -1 P+ 5 p+3 p+1
4 4 4 4
o p+3 p-3 p-1 p+1
4 4 4 4
: p -9 p -3 p-5 p -7
4 4 4 4

Theorem 1

Let p be a prime = 3 (mod 4).

m(p) =& 3 3,

m(p) = b g 7.

(a) If p = 3 (mod 8), then 7, = i, n(p)

(b) If p = 7 (mod 8), then 7,

i, = n(p)

Proof: It is shown in [2] that the array of integers 1, 2, ..., p -1 is
symmetric, in that a cell of gr corresponds to a cell of gnr of equal length.
(This follows from the fact that g is a gr if and only if p - g is a gnr.) So
ip = in and, thus, from Lemma 1, n(p) = m(p) = Z/2. The conclusion follows by
applying Lemma 2.

The fact that for p = 3 (mod 4), both 7, and %, are determined in Theorem 1
gives justification in also determining s,, s,, €,, and e,. Hence, this shall
be done at this point. At the appropriate juncture, these entities will be de-
termined for primes = 1 (mod 4).

Theorem 2

Let p be a prime = 3 (mod 4).

(a) If p = 3 (mod 8), then s, = 5, = P g > and e, = e, = p g 3;
(b) If p = 7 (mod 8), then s, = 5, = 4 ; L and e, = e, = 4 ; L

Proof: As in Theorem 1, use symmetry and apply Lemma 2.

Note: The case p = 1 (mod 4) does not follow so easily. The symmetry of
the array used in Theorem 1 does not apply; a cell of qr corresponds to another
cell of equal length of gqr. (This follows from the fact that a is a gr if and
only if p - a is a gr.)
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Next, as in [1], S(1) will denote the following sum:

P (e ) )
n§%<n n + lp(n + 2 >.

Since Lemma 1 relates to the sum of %, and Z,, in order to solve for <, and
i1y, it is sufficient to discover 7, - Z,. Hence, this shall be our goal.

The proof of the next lemma appears in [1]. [The definition and value of
S(&) will have no bearing on our results; the fact that S(2)/2, an integer,
exists is sufficient.]

Lemma 3

For p a prime = 1 (mod 4),

R + (52 -

It is well known that p is uniquely expressed as the sum of squares of two
integers (other than with a change in sign, or an interchange of the two inte-
gers). Furthermore, the two integers have opposite parity. Ultimately, we
shall show that S(l), whose value we seek, is such that S(1)/2 is (+) the odd
integer which appears in the expression for p in Lemma 3.

The next lemma lists further results from [2] which will be used in deter-
mining the value of S(1).

Lemma 4
For p a prime = 1 (mod 4), the following are identities:

(1) e, + 8, = P Z L and e, + s, = P Z 3. (These follow from an examination of

the number of gr and gnr cells in the array.)

(2) 2, = 8, - 2 and 72, = S,,. (These follow from an examination of the rela-
tionship between a gnr singleton and its multiplicative inverse.)

Next, a further investigation of S(1).
Lemma 5
For p a prime = 1 (mod 4),

4(s, — 8, - 2, 1if p =
S(1) =

4(s, - 8,) - 6, 1if p

1 (mod 8),

5 (mod 8).

Proof: First, an examination of S(l) shows that a term in the summation
will be positive when »n + 1 is either a gr singleton, a gnr left or right end
point, or a gr interior point. Similarly, the term will be negative when n + 1
is either a gnr singleton, a gqr left or right end point, or a gnr interior
point.

Now, define 4 and B as follows:

A =5,+ 2e, + iy

s, t 2(p Z L sn) + (8, — 2), wusing Lemma 4;
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B=g, + 2, + i,
+
=3, + 2(2—2~§ - sr> + s,, using Lemma 4.

Using the above determination as to when a term is positive or negative,
S(1) is almost equal to A - B. 1In the case p = 5 (mod 8), we must subtract 2
from 4 because 1 and p - 1 are singletons counted in s, which do not appear in
the sum (a result of the fact that landp - 1 are qr and 2 and p - 2 are gnr).
Similarly, in case p = 1 (mod 8), we must subtract 2 from B because 1 and p - 1
are quadratic residue left and right end points, respectively, which do not
appear in the sum (a result of the fact that 1 and p - 1 are gr, and, in addi-
tion, 2 and p - 2 are gr). Finally, incorporating these changes with the ap-
propriate *2 to 4 ~ B = 4(s, - 8,) - 4, the conclusion follows.

Theorem 3

Let p be a prime = 1 (mod 4) and p = a® + b?, where a is positive and odd;
then,

a+l
P-15 +é§(—1) : a’ if p =1 (mod 8),

1, = n(p) = a-1
p"7+§(’1)2 2 ifp =5 (mod 8),

a-1
P=-3% é(_l) ’ a, if p =21 (mod 8),

i, = m(p) = atl
p'3+§('1)2 . ifp=z5 (mod 8).

Proof: The case p = 1 (mod 8) will be examined; the case p = 5 (mod 8)
follows similarly. As can be seen from Lemma 5, S(1)/2 is odd, and by using
Lemma 3, the uniqueness of the odd integer in the sum of squares, and Lemma 5,

4(s, - 8,) = 2
2

= *q.

This, along with Lemma 4, implies that

i.o- 4 -*a-3
r n 2
The symmetry of the array guarantees that both <, and %, are even; hence, #*a -
3 must be divisible by 4. Since a is odd, a = 1 (mod 4) or a = 3 (mod 4). If
a =1 (mod 4), then we must have -a - 3; if a = 3 (mod 4), then we must have
a - 3. The factor (-1)(@+1)/2 yields the appropriate sign. Now, from the table
in Lemma 2, Z, + Z,=(p - 9)/4. By solving the system of linear equations, we
have the conclusion.

For example, let p = 13; then, since 13 = 32 4+ 22, a = 3. Furthermore,
13 = 5 (mod 13); hence, from Theorem 3, n(l3) = <, = 0, and m(l3) = i, = 2.
Specifically, the two gnr triples occur in the middle cell in the decomposition
for p = 13,

1 2 3, 4 5, 6, 7, 8 9, 10 11 12.
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Finally, having found ¢, and %,, we determine s,, s,, e,, and e,.

Theorem 4

Let p be a prime
then,

=1 (mod 4) and p = a

at+l
P+1+ 2(-1) 2 ¢ .
3 ,» 1if p
SI‘= az-l
p+ 9+ 2(-1) a .
8 ,» 1ifp
g%i
p -3+ 2(-1) a .
3 » 1if p
o T et
p -3+ 2(-1) a’ if p
8
aT—l_
p+5+2(-1)2 a .
) » 1if p
ér = atl
p -3+ 2(1)2 a i p
8
atl
_ 2
p+ 1+ 2(-1) a s p
8
n T ot
p+ 1+ g(—l) a’ if p =

= 1 (mod

m
wv

(mod

i
—

(mod

1t
w

(mod

i
—

(mod

i
w

(mod

= 1 (mod

1
w

(mod

Proof: Use Lemma 4 and Theorem 3.

Theorem 5

+ b?, where g is odd and positive;

8),

8),

Let each of €, n, and v take one of the values #* 1, and let T denote the

number of triples, a, a + 1, a + 2, where a

(7)o (3

Then

<0 ma (£52)-

=1, 2, ..., p - 3, for which

Proof: As donme with pairs on page 71 of [3] (here, the sums being from 1

top - 3),

7= -é—Z,:(l + e(%))(l + n(—o‘——;;-l))(l + \)(_6_1;-_2))]
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Next, expand T into eight sums and use the facts that

T(E) -0 ama T (FEEEED) 2 for o0 - 1

a=1 p a=1 p p
then, apply Lemma 5 to substitute for S(1).

We now turn our attention to "The Last Entry," see [4], which refers to the
last entry in Gauss's mathematical diary. There, he states:

Theorem (Gauss)

Let p be a prime = 1 (mod 4); then, the number of solutions to
z? + y* + z*y? = 1 (mod p) is p + 1 - 2a,

where p = a® + b?, and a is odd.

Note: (1) the sign of a is to be chosen '"appropriately," and
(2) there are four points at infinity included in the solution set.

Proof: If either « or y is = 0 (mod p), then the other is = *1 (mod p). In
the following, we shall assume that neither x nor y is = 0 (mod p). Now,

(x, y) is a solution <=

22 4+ y? + 2%y® = 1 (mod p) <>
(x? + Dy? =1 - % (mod p) <

z® + 1 and 1 - z? are both qr or gnr <=

2?2 + 1 and 2? - 1 are both gr or gnr [since p = 1 (mod 4)] <>

2 2

x? - 1, 2%, x> + 1 is such that x? is either a qr singleton or a gr interior
point [with the exception that for p=5 (mod 8) and x = *1 (mod p); these val-
ues are qr singletons (#2 are gnr) which have been taken into account]. Hence,
the number of solutions is

4(s, + 2,) + 8 for p =1 (mod 8),
4(sp, =2+ 72,) +8 for p =5 (mod 8), .

where the "4 times" is for (#x, *y), and the 8 is for the 4 points at infinity
and the 4 solutions (0, *1), (1, 0). Simplification yields the solution.

|
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