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If the simple continued fraction expansion of the positive real number a is 
given by 

, 1 
a = an + : 5 

an + a2 + 

where ctj is a positive integer, then we denote the continued fraction expansion 
of a by 

{a03 als a2S . . . } . 

If 

P = l ^ O ' ^ 1 ' ^ 2 ' • • • > % _ i s CLj^s &fc+i> ^fc+z* • • • / j 

then a and 3 are defined to be equivalent. That is5 they have the same tails 
at some stage. 

The j t h total convergent to a, Cj , is given by 

J = <- ̂" 0 > ^ 1 ' • • • J CC j S > 

and if we represent the rational number Cj by p./q.9 then it can be shown that 

Pj = Pj-2 + ^ j - 1 ' 

^ = «J-2 + a ^ J - l ? ( 1 ) 

for j > 0, p_2 = q_± = 05 and q_2 = p_x = 1. 
It is easily proved (Chrystal [1], Khintchine [2]) that 

qj+1 > qd > ^--x > ••• > q0 = 1, 
C0 < C2 < Ch < ' • • < a < • • • < C5 < C3 < C1, 

lim (7- = a. 

From Le Veque [3] or Roberts [4], we have the following theorems. 

D i ri chlet's Theorem 

If alb is a rational fraction such that 

a\ 
a - b < ^ 

then alb is a total convergent to a. 
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Hurwi tz's Theorem 

If a is irrational, then there are infinitely many irreducible rational 
solutions alb such that 

a -
/5b2 

for = 1. 

In fact, if we restrict a to be an irrational which is not equivalent to 
T = (1 + A/5)/2 = {1, 1, 1, . ..} (the Golden Mean), then we are able to find 
0 < 3 < 1 for which there are an infinite number of solutions. For example, if 
a is equivalent to A/2, then from Le Veque [3, p. 252] we have 3 = VTO/4. 

Using (1), the convergents to T are given by 

CA 
j + i 

where F;- is a term of the Fibonacci sequence {1,1, 2, 3, 5, ...} and 

,-J+i 
Fd = 

- (1 - T) J+l 

/5 
for 3 = 0, 1, 2, 

(2) 

(3) 

It has been shown in Roberts [4] that in the particular case where 0 < 3 < 1 
there are only finitely many irreducible rational numbers alb such that 

a 
T - -r 

< 3 
/5b2 

Since 0 < 3 < 1> then 0 < 3/̂ /5 < 1/2, and so by DirichletTs theorem there are 
only finitely many total convergents to T such that 

I T " Cj I < ^ 
(4) 

where Cj is given by (2). 
Our purpose is to determine explicitly the finite set of convergents to T 

that satisfy (4). 
If j is odd (j = 2k + 1, k = 0, 1, 2, 

positive values of k such that 
. ) , then using (2) in (4) we seek 

y2k+i I 
2fe+2 

?2k+l 
- T 

\/5F 2k+i 
Substituting (3) in (5) and simplifying, 

[T(l - T)] 2k+ 2 [(1 - x)2] 2 T 2k + 2 < /53 
2T - 1 

Using T2 = 1 + x, this becomes 1 - (2 - T)2k + Z = 1 - (5 - 3x)fe+1 < 3 or 

1 < (5 - 3T) ? 

5 - 3T 

Taking natural logarithms and using T = (1 + v/5)/2, we have 

In' 
> 

f(l - 3) (7 + 3V5)\ 

156 -f ^ } 

(5) 

(6) 
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If j is even (j = 2k, k = 0S 1, 25 . . . ) , then substituting (2) in (4) we 
have 

C I = T - F2k+1 < 
u2k\ F 2k S5<k 

By reasoning similar to that which led to (6), we find that 

ln|(B- D(3 + v ^ 

k<—i Z—z '-• (7) 

We note that the denominator of the right-hand side of (6) is negative and 
so positive values of k in (6) exist only if 

ln{(l-2B>(7 + 3^5)} < 0 ) 

which means 1 > 6 > (3A/5 - 5)/2. 
Similarly, we see that since 0 < (3 < 1 there are no positive values of k 

that satisfy (7)* 
Hence, there are no convergents to T that satisfy (4) unless 

% ^ < e < i , 
and in this case the only convergents that do satisfy (4) are given by 

F 
C- = ~y~l J = 1, 3, 5, 

where _ )• (8) 

fl-ln (1 - g)(27 + 3 ^ / l n 

and [R] denotes the integer part of R. Consequently, there are [R] + 1 conver-
gents to x that satisfy (4), and these may be determined explicitly from (8). 
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