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1. THE CONJECTURE 
In the March 1983 issue of the Mathematical Gazette [9], Mr. Moore conjectures 
that if one lets 

1 1 

1 1 + x 
(1.1) 

raises Q to powers and scales each such matrix down by making the leading entry 
1, then the scaled down sequence of matrices approaches 

(1.2) 

as n -* °°, where (f) = (x + vx2 + 4)/2. 
The purpose of this paper is to show that the conjecture is true if x>-2, 

while the limit is 

r1 
^-2 

(1.3) 

if x < -2 and does not exist if x = -2. 
It is worthwhile to mention at this point that the conjecture was first 

brought to the editor!s attention by a letter from Mr. Moore in October 1982. 
The proofs of Theorems 1 to 6 were completed by Professor Bergum in November 
1982. Due to the pressure of other work, the publication of these results was 
delayed. Several months later, the information on Jacobsthal polynomials ar-
rived from Professor Horadam along with an alternate proof of Theorem 4. Pro-
fessor Bennett joined the group by showing that (2.14) does not have a limit as 
n approaches infinity. The combined results are what is to follow. 

240 [Aug. 
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If one carefully examines the way we multiply matrices, then it is quite 
obvious that the elements of the powers of Q satisfy linear recurrences. Exam-
ining the first five or six powers of Q5 we are led to believe that 

Mn Nn 

(1-4) 

where we define the sequences {Hn}, {Mn}, and {Nn} recursively by 

Hn+2 = (x + 2)Hn+1 1, ff, 2, 

Mn+2 = (x + 2)Mn+1 - xMn, M1 = 1, M2 = x + 2, 
Nn+Z = (a + 2)Nn+1 - xNn, N1 = x + 1, N2 = x2 + 2x + 2. 

(1.5) 

(1.6) 

(1.7) 

Before proving the validity of (1.4), we first establish the following re-
sults. 

Theorem 1: (a) #„ + M Hn + ls 

(b) Mn + Nn = M n+l ' 

(c) (x + l)Mn + En 

(d) (x + l)Nn + Mri 

M. n + l ' 

Proof: Since the proofs are very similar, we prove only part (c). 

When n = 1 we have (x + l)M1 + # 1 = x + l + l = x + 2 = M2, and when n = 2 
we have (x + 1)M2 + H2 = (a; + l)(a; + 2) + 2 = x2 + 3x + 4 = M3; so that (c) is 
true for n = 1 and 2. Now assume the statement is true for all positive inte-
gers less than k where k > 3. Then by (1.6), (1.5), and the induction hypothe-
sis, we have 

(x + l)Mk + Hk = (x + l)[(x + 2)Mk_1 xM-k-2- + [(x + 2)H fc-i x# fc-2 
(a; + 2)[(ar + DMk_1 + #fe_x] - ^ [ ( x + l)Mk_2 + #fe_2] 

<* + 2)Mk - xMk_1 =Mk+lS 

and (c) i s proved. 

The proof of (1.4) follows directly from Theorem 1 by mathematical induc-
tion giving 

1 1 
then Theorem 2: If 

Hn Mn 

Mn Nn 

for all integers n ^ 1. 
.1 I + x_ 

Now we scale down Qn and obtain a new sequence of matrices {Rn} where 

1 Mn/Hn 

_Mn/Hn Nn/HnJ 
(1.8) 

and then ask: What happens as n -* °°? To answer this question, we first apply 
(1.6) and (1.7) found in [6] and obtain 

_ (2 - 3)a* (2 - a)f n > l3 (1.9) 
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M (» + 2 - sxx"-1 - .Qr + 2 - o o e " - 1
 n>l> 

n Ot — p 

,7 [a?2 + 2a? + 2 - (a? + l ) S ] a n - 1 - [a?2 + 2a? + 2 - (a? + l j g J B " " 1
 n ^ 

" n - a _ 6 > u.n; 
w > 1, 

where 

(x + 2) + Va?2 + 4 , D (a + 2) - Vx2 + 4 /i io\ 
a = —̂~ and $ = ;> • (1*12) 

are the roots of the characteristic equation arising from the recurrences (1.5), 
(1.6), and (1.7). Next, we analyze the range of (3/a and a/$9 as this is needed 
before we can find 

Mn Nn 
lim — and lim — . 
rc + °°  tin n + ™ tin 

If x > -2, then 0 < 2(a?2 + 4) + 2(a? + 2)Vx2 + 4, so that 

4a? < [x2 + 4a? + 4 + 2(a? + 2)>/a?2 + 4 + a?2 + 4] = [ (a? + 2) + Vx2 + 4 ] 2 

or 
1 > 4a?/[(a? + 2) + Vx2 + 4 ] 2 . 

When a? ^ 0 we can m u l t i p l y and d i v i d e t h e r i g h t s i d e of t h e l a s t i n e q u a l i t y by 
(a? + 2 - y/x2 + 4) t o o b t a i n 

1 > x + 2 ~ ^ 2 + 4 = j3 
x + 2 + Va^~T~4 a 

I f x - 0 , t h e n 3 = 0 and a = 2 , so t h a t 3 /a = 0 < 1. Since x > - 2 , we a l s o have 

0 < x + 2 + /a?2 + 4 or 0 < 2 (a? + 2) 2 + 2(a; + 2)Vx2 +~4, 

so t h a t 

-4a? < 2a?2 + 4x + 8 + 2(a; + 2)>/a?2 + 4. 

Hence, 
4a? > -[(x + 2) + Vx2 + 4 ) 2 or - 1 < 4a?/[ (a? + 2) + /a?2 + 4 ] 2 . 

Opera t ing as be fo re when a? ^ 0 , we see t h a t 

_1 < QE + 2> ~ ^ 2 + 4" = 1 
(a? + 2) + Va?2 + 4 a 

which is also true if a? = 0. Therefore, 

-1 < -& < 1, if x > -2. (1.13) 

When x < -2, we have 
a? + 2 < /a?2 + 4 or 2(a? + 2) 2 > 2(a? + 2)\/a?2 + 4 , 

so t h a t 
2a?2 + 4a? + 8 - 2(a? + 2)Vx2 + 4 = (a? + 2 - /a?2 + 4) 2 > -4a?. 

Hence, 

242 [Aug 



JACOBSTHAL POLYNOMIALS AND A CONJECTURE CONCERNING FlBONACCS-LIKE MATRICES 

-1 < te/(* + 2 - v^~T^)2 = X+ 2 + ^ 2 ± A a a a 
x + 2 - Vx2 + 4 ^ 

Since x < 0, 

x2 + 4x + 4 < x2 + 4 or /(# + 2) 2 < Vx2 + 4. 

Therefore, 

|x + 2 | < /x2 + 4 and a? + 2 > -Vx2 + 4, 

so that a > 0. However, 3 < 0 and we get 

-1 < ! < 0, if x < -2. (1.14) 

When x = -2, we have a/3 = 3/a = -1. Combining these results, we obtain 

Theorem 3: If a = ~ and x + 2 - Vx2 + 4 
, then 

(a) 3 a -1, if x = -2, 

(b) -1 <•£ < 0, if x < -2, 

(c) -1 <-£ < 1, if x > -2. 
a 

Let x > -2 and # ^ 0; then by Theorem 3(c), substitution of 3* and ration-
alization 

, . Mn X + 2 x + 2 + Vx2 + 4 x + Vx2 + 4 
2 6 (2 - a) + Vx2 + 4 2 

Also, using similar steps, we have 

Nn _ x2 + 2x + 2 - Q + 1)3 _ x2 + x + 2 + (x + l)Vx2 + 4 lim 
#*» 2 - 3 (2 - x) + Vx2 + 4 

2x2 + 4.+ 2xv/x2~T~4 _ ,2 

If x = 0, then Mn./Hn = #n/#n = 1 for all ft, so that 

Mn Nn 
lim —- = lim — = 1. 

Hence, we have 

Theorem k: If x > -2, then lim i?„ 

Let us now assume that x < -2; then reasoning as above, we have 

2 _-, ., . Mn ar.+ 2 - a x + 2 - Vx2 + 4 lim — = — — = 
Yl -+• oo /iy, Z "— Gt 

2 - x - Vx2 + 4 x + Vx2 + 4 
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Similarly, 

- . Nn x2 + 2x + 2 - (x + l)a 
lxm 77— = ~ 

n + oo Hn 2 - a 
and we have in (1.8) 

Theorem 5-' If # < -2, then lim R -

When x = -2, Q 
1 1 

1 -1 
in (1.1) so that Rn = 

} , if n is odd 
, where 

J, if n is even 

1 0 

_0 1_ 

Hence, we obtain in (1.8) 

Theorem 6: If x - -2, then lim Rn does not exist. 

Observe that when # = -1, (1.5), (1.6), and (1.7) all reduce to the defi-
nition for the sequence of Fibonacci numbers and (1.1) becomes 

"l l" 

_1 0_ 

which is discussed in [1], [2], [3], and [4]. 

2. JACOBSTHAL POLYNOMIALS AND MATRICES 

The Jaeobsthal polynomials Jn(x) = Jn axe defined in [7] by the recurrence 
relation 

Jn+2 = Jn+1 + xJn (JQ = 0> Jl = D 

and the first few term of {Jn} are 

Jl J2 JB Jh JS 

1 1 1 + x 1 + 2x 1 + 3x + x2 

The matrix (1.1) can now be expressed as 

1 + l\x + 3xz 

(2.1) 

(2.2) 

J 
J, J2 

-J2 y 3 J 

and justifiably called a Jaeobsthal matrix. 

(2.3) 
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Powers of this matrix obviously do not have Jacobsthal polynomials as their 
entries. 

Therefore, two questions arise: 

(i) How may the Jacobsthal matrices 
Jn J

n+1 

L / n + l Jn+2-J 
, n > 2, be generated? 

(ii) What is the result if we scale these matrices down as in (1.8) and let 
n -> °°? 

The answer to (i) is associated with the matrix H [E H(X)] 

"0 
H 

x 1 
(2,4) 

Using (2.1)-(2.4) and induction* we readily obtain 

HnJ = 
Jn+1 Jn+2 

Jn+2 Jn+3 
(2.5) 

so question (i) is answered. 

Let the matrices generated by powers of H in (2.5) be represented as 

Jn=HnJ. (2.6) 

We call the set of matrices {Jn} the Jacobsthal matrices, since all their en-
tries are Jacobsthal polynomials. 

Scaling down the Jacobsthal matrices, we have 

J„ 

n+l 

Jn+2 Jn+3 
Jn+1 Jn-i 

(2.7) 

Now5 the Binet form for Jn can be found by routine measures (see [2] and 
[8]) to be 

eL r 
y/l + kx 

•y X i 
1 

where ^ _ _ _ 
1 + Vl + Kx . 1 - /l + kx 

y = _ , 6 = _ 

are the roots of the characteristic equation 

A2 - X - x = 0 

for the recurrence relation (2.1). 

(2.8) 

(2.9) 

(2.10) 
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Let x > -1/4. Elementary calculations reveal that |6/y| < 1. Hence, 

J 
lim-4^- = Y, (2.11) 

and 
J, n+2 

11m-=— = yz, (2.12) 

so that the limiting form of J,* is 

"1 Y" 

y Y 2 
(2.13) 

When x = -1/4, y = 6 = 1/2. Hence, Jn = n/2n~1 by standard methods of dif-
ference equations where the roots of the characteristic equation are equal. 
Therefore, (2.13) still holds. 

If x < -1/4, then from (2.1) 

2(v^) n . . , 
Jn = —ZZZZZZT sm(nT) 

V-l - kx 
where cos T = 1/lV-x and sin x = V-l - bx/2V-x. Therefore, 

n + 1
 = r— sin(n + 1 ) T _ ( 1_ (cot TIT)V-l - 4ar\ ,? , ,. 

Jn V ^ sin(nx) " \2 + 2 /' u" 1*' 

Theorem ~Ji There is no real number T having the property that 

lim cot(nx) exists as a finite real number or ±°°. 

Case I . Suppose that T is a rational multiple of IT, say T = (p/q)i\, where 
p is an integer and q is a natural number. Then cot(nx) is not even defined 
for integers n that are multiples of q. 

In each of the cases to follow, it will be assumed that x is not a rational 
multiple of TT. Then sin x + 0 and sin(nx) ^ 0 for any positive integer n. Sc 
the formula 

. , i\ cot(nx) cot x - 1 ,0 K v 
cot(n + l)x = 1 , ' - . , —-— (2.15) 

cot(nx) + cot x 
is valid. Note also that cot x ^ 0. Furthermore., cot(nx) £ 0 for any positive 
integer n since this would imply that X is a rational multiple of IT. 

Case I S . If lim cot(nx) = ±°°, then (2.15) yields 

1 
cot x / x -. . / IN -, . cot(nx) oo = lim cot(nx) = lim cot(n + l)x = lim • — — — — — = cot T, 

cot(nx) 
which is impossible. 

Case III. Suppose that lim cot(nx) = r9 where r is some real number. Set 
s = cot x. If r + s £ 0, then from (2.15), 
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rs 
r - r + s 5 

r2 •+ 
and 

r2 + rs = rs - 1, 

r2 = -1, which is impossible, 

If r + s = 0, then in order to obtain a finite limit in (2.15), it must follow 
that rs - 1 = 0 . Thus, 

or 

1 
r = -s = — 

s 
,2 _ -1, which is impossible. 

It has now been shown that, for all possible choices of T , lim cot(nx) can-
not exist. Hence, Llm(Jn+1/J ) does not exist. 

Much more can be said about other properties of the Jacobsthal polynomials 
Jn. They are, in fact, a special case of the un(a, b; p3 q) discussed in [6], 
where p = 1, q = -x» See the Historical Note below for Jacobsthal1 s original 
contributions and [5] for additional properties. 

3» HISTORICAL NOTE 

The recurrence relation (2.1) is associated with the name of Jacobsthal [7] 
who, in 1919, seems to be the first to record it. His notation is related to 
ours by the correspondence where Fn(x) are the Fibonacci polynomials defined by 
F^x) = 1, Fz(x) = l, Fn + 2(x) = xFn+l(x) + F (x). 

Using methods different from ours, Jacobsthal established the Binet form 
(2.8). Among other basic results demonstrated by him are, in his notation, 

(a) the explicit summation formula 

[n/2 
Fn(x) = EQ (n ~k

 k)x* 

(b) the extension of the definition of Fn{x) to negative values of n. That 

F_n(x) = (-Dn , n> 1. 

Both of the above results can be readily converted, with due care, into our 
(/-notation by means of the stated correspondence. 

Although Jacobsthal alludes to the polynomials (2.2) as "Fibonacci polyno-
mials," they are now known by his name; in fairness, then, the matrices whose 
entries are Jacobsthal polynomials must also bear his name. 
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