FIBONACCI AND LUCAS NUMBERS OF THE FORM 322 % 1

31F,, 41, which is impossible since 3 divides F, if and only if 4 divides m.
Hence, in this case also, there are no solutions.

2

Theorem 6: The equation L, = 33° - 1, m = 0 (mod 2) has only the solutions

m =0, *8.

Proof: The proof is the same as that of Theorem 3, where we take into account
the fact that L, = -1 (mod 23) if 16 divides n.

Corollary 2: (a) L, =322 + 1 if and only if m = 1, 3, 9.
(b) L, = 322 - 1 if and only if m = -1, 0, 5, 18.

Remark: We can apply (26) and (27) as in [1] in order to obtain some state-
ments about the solutions of diophantine equations of the form

DY? = AX* + BX? + C.
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