ON BERNSTEIN’S COMBINATORIAL IDENTITIES
MARTE-LOUIS LAVERTU & CLAUDE LEVESQUE
Université Laval, Québec, P. Québec, Canada GIK 7P4
(Submitted February 1984)

To the memorny of Professon Drn. Leon Bernstein*

0. INTRODUCTION

Using elementary properties of algebraic numbers of certain finite exten-
sions of @, L. Bernstein obtained in [1], [2], [3], [4], and [5] some combina-
torial identities. 1In this paper, we want to give a clear and quick matrix
treatment of Bernstein's technique, from which it will be seen that his combi-
natorial identities are in fact determinants.

In Section 1, writing the powers of an algebraic number w of degree m over

Q as
1

n o= oo o m=
whr=r, +r,w+ + 7w .

we give, in (1.4) and (1.5), the mtP-order linear recurrences satisfied by the
numbers

ri, s n € Z, g =1, 2, ..., m.

Let us note that L. Bernstein is always considering the case where J = 1 and w
is a unit of Q(w): see [3]; as far as [1l], [2], [4], and [5] are concerned, L.
Bernstein deals with the case m = 3.

In Section 2, Euler's generating functions are calculated in two ways: one
with the help of the sums p, of all symmetric functions of weight ¢; the other
using the multinomial theorem. The second method is used by L. Bernstein, but
the concluding remark of the last paragraph still applies.

A very general procedure combining the properties of the norm of an alge-
braic integer and Cramer's rule is described in Section 3, which leads to what
can be called combinatorial identities.

In Section 4, we conclude this paper by giving a formula for rj; involving
the determinant of a Vandermonde matrix and the determinant of a matrix that
is "almost" of the Vandermonde type.

1. RECURRENCE RELATIONS

Let w be a root of the polynomial
FO) = XM+ K X™ Y + eos + Ky X + K= (X = 0) (X = 0p) oee (X = ay)

irreducible over Q with m distinct (nonzero) roots 0, = W, 0,, ..., O,, Whence
the field Q(w) is of degree m over Q. Let us consider the (positive, negative,
zero) powers of w.

*Professor L. Bernstein died on March 12, 1984, of a cerebral hemorrhage.
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ON BERNSTEIN'S COMBINATORIAL IDENTITIES

For n € Z, let

wr=r, +r,w+ - +mn

with coefficients in Q. Since
m = — m-l — ° e — —
w" = -k,w Ko = Kpyps

we obtain the equality
n+l

= 2
w = Kyl + (2, = K, 1P w + (r,, - Kol Y0+
+ (Pm—l, n klrrrm )wm—l’
which leads to the system
Py 4y = 0Py, + 01, + -o0 + 00,y - KyZps
r2,n+1 = lrln + OPZ?’L oo t Orm—l, n km-lpnm 4
Poae1 = Or, —+ 1r2” + e+ Orm_l’n - km_zrmn, (1.1)
l”m, n+l = Orln * Oan toees At lrm—l, n = klrrrm °
Define the matrices
0 0o -k, ri,
1 0 0 =k,_y r,,
0 1 0 - r
C = km-2 . Rn = 3n R
L 0 0 ce 1 k1] L 2|
Q=11 w w? ... "], I, = Identity matrix,

of dimension m x my m x 1, 1 x my, m X m, respectively.
Hence, we have w” = QRF, and
= - — Nt
R, =1I,R,, R,y =CR,y «ees B, =C'Rys oo,

from which we conclude

R, =C"'R, withR =1[1 0 ... 0]°,
and
r;, = (j, 1) element of cn. (1.2)

It is worth noting that system (l.1) leads to the following matrix, which
means that it suffices to have a formula for r,, in order to know all the coef-
ficients of w”:
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ON BERNSTEIN'S COMBINATORIAL IDENTITIES

— -
2’lln
T km—l
1, n-1 km Tin
R + km—l km—z
n - rl,n—z km Pl,n—l + Knm iy
km—l + + kl
Tl,n+1—m km Pl,n+2—m km rln

It is well known that the characteristic equation of C is
m m=1
AT+ kX + e+ Kk, A+ K,
whereupon the eigenvalues of ( are o, Oys «ses Op. Since

c"= <k, 0" = ee =k C = koI,

m

we deduce

Rysm=C'R, = -k,R - e -k

n+m-1 m-1""n+1 kan’

from which we conclude (with 1 < jJ < m):
Pj?z = _klrj,n—l — e - km_lrj’n_mﬂ - kmrj,n_m. (1.3)

In particular we obtain, for the coefficients of w? and 0wt with t > m, the two
following mth-order linear recurrences (with 1 < j < m):

T R = Koot omar ™ Kn¥, b oo (1.4)
Kn_1 ky 1
it T Tk, Td-t+1 " T, Tistem-1 T % Ti-t4m? (1.5)
with the initial conditions for 0 < Z < m - 1 being

. Sl ifj=i+1

= T = £
r (js 1) element of C {0 elsevhere, (1.6)
r, 0= (j, 1) element of c-t. (1.7)

Note that for the rest of this article, as opposed to [1], [2], [3], [&],
and [5], we do not restrict ourselves to the case j = 1.

2. GENERATING FUNCTIONS

Using the mth-order linear recurrence given in (1.4) and the known values
of r;; in (L.6) we obtain, for jg =1, ..., m,

3 n oo -1 my _ yd-1 Jo. -1
(n=oran >(1 + kX + ok, X7+ kX)) = X9 4 kX e+ LA
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ON BERNSTEIN'S COMBINATORIAL [DENTITIES

So
. X374k X e kXY
n _
E:ZBWX - m=1 m
n=0 1+k X4+ 0o +k X + kX
1 m-1
-1 I e =1
X7t + k X7+ +k, X

where p, stands

Oy e

r, =
Jn

T -0 - o (- agh)

[CCREE 3P CAE R 3

m

for the sum of all symmetric functions of weight ¢ in a,,
Hence, we conclude

m-J
tz%ﬁtpﬂ-J+l—t ifnxgd -1,
0 ifosn<gj-1,

where, as stated in [6],

m

p, =2

i=1

Similarly, using (1.5),

(né%lv’-

X

= k,r; + kmrj’_lX + kmrj’_zXz + o+ kmrj’_m+2
LIPS D G T FRD I LIS 1 T SN0 (b
+ km_zrjon e+ Ry v X2+ K
+ kyr; X 4 ks X7
+ klrjoX”'l
= kyr, o mo1X rﬂ.,m_zﬁ SRR P9 ST NP Gl
Tt T . TIPS LSRRI O P G
Ry 32X = km_grlez
Kp_ o1 X
= Kj(X);

0er'z—1+1k
7

?nz&zjn with p = ko

i
.
S
1
o
I
3
o
"

n . s m—‘l m
n X >(km + km_lx + + klx + X

where the polynomial X;:(X) is defined by:
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(1.3), and then (1.6), we obtain

r

-1

m=2
X + kprs

Mm=2" g, =-m+3

m—1rj,—m+2

_ij—l)(l+plX+p2X2+...+tht+-..)’

A

(2.1)

Xm-l

Xm—l
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ON BERNSTEIN'S COMBINATORIAL IDENTITIES

- if 4 =1,
K; (X) = , ) (2.2)
Ky g X = Ky g1 X2 = e = kXTI df 2 < G <om

Thus,

- E; (%)
X" = .
kn(L = a7 X) (1 = a3'%) ... (1 - op'X)

ngo rj G

. For 2 =1, ..., m, let kz denote the Z'® elementary symmetric functions in
0]%s «..s Op’, so that
% _ (_13\%
ki = (-1) km_i/k
as is well known. Now, let p? stand for the sum of all symmetric functions of
weight ¢ in a;l, ey u;l; letting
k ky

-1
yrp Tl ymely ey Dy 4 b
Km

me

F(Y)

(Y - oM@ -a3") ... (¥ -arh),

we have
(Oc-'l)m-—li-t
1T
p: =.§%"‘7‘“?I“"
= F (ui )
* = * = eoe == * =
and p—l p—z p~m+1 0

We conclude that
2%1}’41X” = kMK (O (L + pXX + piX2 + oo 4 T 4 o0),
ne

and this leads to

1,

= 1 m=g N . (2.3)
%;tz%ﬁm'j—tpn—l—t ifg=2....m

3
X
[N
h
[
]

Instead of wusing p, (resp. p:), one can also use the multinomial theorem
from [7] to find r, (resp. r; .,). For example, as in [10], we have (within
an irrelevant radius of convergence)

©

n
nZ%IE”X .

= @it + lej + e+ k .X”'l)[ ff(—l)j(klx +oeee + kXM 4 kam)j]
Jj=0

m-g

= (x4 lej T + km_ij'l)< 55,4(i)Xi),
=0

where
(tl + tz + e+ t,)!

E 1E,0 <es Tl

A7) =T (-1)aattt e kflkzz Voo Kl

m ®

19851 351



ON BERNSTEIN'S COMBINATORIAL

IDENTITIES
the last sum being taken over all m-tuples (%, ¢,,
ty + 2t, + +oc +mt, = 13
therefore,

s tp) of N" such that

m-J

r. =Yy kiA(n - j+1-1),
Y
with the convention %k,

(2.4)
Similarly, for J

1, and A(Z) = 0 for © a negative integer.
=2, ..., M, we have

© — _
ng%rysin = ( km_jX k

SUPIG RS koxm‘j”)(Z B(i)X‘i),
=0
where
(_1)t1+tz+.”+tm(t1 + tz + oees + tm)! t t t
B(Z) = ¥ - k* k2.0 kI,
Byttt ekt 4l L, , m-1"m=2 1
m titt,! L.t
the last sum being taken over all m-tuples (tl, tz,
t,+2¢, + e A mt, = 2.

s Tw) such that
Defining B(Z) to be 0 for 7 < 0, we therefore obtain

kmB(n) if J =1,
= (2.5)
Ti,n = m= j .
X ki Bn -1 -1ty if § =2, ..., m.
t=0
Although formulas (2.4) and (2.5) with J

= 1 may look different from Bern-
To conclude this section, let us remark that if one wants a formula for the
powers o” for a a, + aw +---+ amwm'l, one can use the characteristic poly-
nomial of o to write an equation of the form

o + byt + .-

stein's formulas (1.14) and (l.14a) in [3], they are in fact equivalent.

-+ b, =0,

3.

and apply the above procedure to get the powers of o as functions of the b;'s

If a =

A GENERAL RESULT
m .

> ailwi‘l € Q(w) and if, for J

=1

=1’

cey My
. l m . 1

J - = -
Ol —,,;E_:]_aijw s

then NQ@»/Q(Q) = det 4, where 4 = [alj]; see [11]
Let us consider the equality

Yy = oB
with B € Q(w) where, for J =

i =1, .., m,
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ON BERNSTEIN'S COMBINATORIAL IDENTITIES

. m . ) m
J~1 _ -1 Jj-1 _ -1,
Buw =2 byw™h, yw =¥ g, wh
=1 =1 v

taking B = [b;;], G =[g;;], Q=11 w ... w™ 1], we have
off = Q4, BR = OB, YR = QG and @B = (B = Q(BA) = Q(4B),
hence, the identity
G = AB = BA.
1f, for a matrix M, we denote its j ™ column by M sy, we conclude
af =y = QG = 4By = QBA(,-

In particular, we obtain 4B()y = Gy, i.e.,

a by +apby, + 0 +apb, =g,
aZlbll + azzbzl +oeee + aZmbml =gy

amlbll + am2b21 T oees + ammbml = Gmi .

Let o # 0; then Ng(,)sg(a) = det A # 0, and the matrix A of the coefficients of

the above system has det 4 # 0. For © =1, ..., m, Cramer's rule gives
1 m
bir = Ter 4 t);lg“ cof(azy), (3.1)
where cof(a,;) is the cofactor of the (¢, %) element of A.
Similarly, if B # 0, we also have, for ¢ =1, ..., m,
]. m
= o B tgigtl cof (byy) . (3.2)
In [2] Bernstein took m = 3, k; =0, k, =g 2 2, kg = -1, o = 0%, B =w™®,

Y = 1, obtained recurrence relations for the rational coefficients of o and B,
calculated the generating function of these coefficients, and then obtained his
combinatorial identities, which turn out to be special cases of our formulas
(3.1) and (3.2); see formulas (4.2) and (4.3) of [2], see also [1], [4], and
[5]. The same was done in a lengthy way for arbitrary m in [3]. It turns out
that in [3], Bernstein is considering o = w" "t B = g"l, v = 1; nevertheless,
he forgot to write ay in front of the determinant appearing in his formula
(2.3b), so formulas (2.4)-(2.7) must be modified accordingly [e.g., the power
of ay in (2.7) is m].

Let us observe that, from a linear algebra point of view, the equality G =
AB with det 4 # 0 immediately implies that ome can solve for the entries of B
in terms of the entries of G and minors of 4.

L. VANDERMONDE MATRIX TREATMENT

Consider the matrix C defined in Section 1, the Vandermonde matrix V, and
the diagonal matrix D shown on the following page: '
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ON BERNSTEIN'S COMBINATORIAL IDENTITIES

2 m=1
1 ) o3 oy o, 0 0
2 m-1
1 Oy oy oy 0 o,
V= . : . R D = .
1 o, o} am~t 0 0 O

Since VC = DV, we have C = V'lDV, and

det V.= [V] = II (0; - @,).
i>i

It is possible to give an explicit formula for C in terms of det V and in terms
of the determinant of a certain matrix that is almost of the Vandermonde type.
Let us do it.

For t =1, ..., m - 1, denote by k,(j) the t th elementary symmetric func-

tion in Q5 +..5 O, ;5 O .» O,, whence

J J+1°

ko (G) = ky + Ry q0; + 000 k1a§_1 + @5- 4.1)

With respect to V, define
-1
V; = cof(@7™1).

T

Then it is well known that

kDY, k_@V, ... k _ 7V,
R L L
Tk S : : .
4 : . .
7l k (LY, KV, oo K MV,
. v, v, ... Vi |

(see for instance [9]). For a proof, call ¥ the matrix IVIV'I, and show that
WV = |V|Im by comparing the (Z,J) elements: if 7 = j, you obtain |V{; if 4 < 7,
you get 0, using (4.1); if J > <, you obtain 0, using the fact that

J-1 = - Jj-2 _ Jj-3 _ ... _ Ji-% _ J-i-1
o% km-i(t) km—i+1at km—i+2at km—lat Ko :

By definition, for all n € Z, let H, be given by

m=2 n-1
1 . - o o
m=2 n-1
1 Oy «ee O Oy
H, = det | . B . : H
m-2 n-1
1 O  eeo Qp O

as is easily verified, this determinant H, satisfies the mtP-order linear re-
currence

H = -k,H . -kH -+ =kH

n 1"n-1 2"n-2 m<n-m*
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ON BERNSTEIN'S COMBINATORIAL IDENTITIES

Keeping in mind formula (4.1), we find for the (J, %) element of ¢ = V7 ip"v
(with 1 < g, t <m):

. I
n-——_
(f» t) element of C" = IVliz%km_j_iHn+t+i’
So, for every n € Z,
1 el
Tjn = ];a—ig%km—j—iHn+l+i' (4-2)
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