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1. SKEW CIRCULICES AND SKEW DISCRETE FOURIER TRANSFORMS

The matrices
L ;

provide a familiar representation of complex numbers x + 7y. Let us consider
the more general matrix

Ty 1 2 t-1
-x
t-1 0 1 t-2
Ll TEL 0 t-3
X = ] (l)
%, %y %, 1
% —%, %y 0
where ¢ is a positive integer, and Xy, &1, ...s &,_; are real numbers. The de-

terminant of X is called a skew circulant by Muir [7, p. 442] and by Davis [1,
pp. 83-85], and we call X a skew circulix. We can write X in the form

X=a,l +ad+ r +x,_J70, (2)

where 7 is the ¢ X ¢ unit matrix and

0 1 0 0. 0 0

0 0 1 0 ... 0 0
T . (3)

0 0 0 0 0 1

-1 0 0 0 0 0
Since Jt = -7, it follows that all polynomials in J can be expressed as poly-
nomials of degree at most ¢ - 1, and every such polynomial is a skew circulix.

Hence, all skew circulices commute with each other.

On a point of terminology, a skew circulix is not in general a skew-sym-
metric matrix although it can be. For example, J2 is both a skew circulix and
a skew~symmetric matrix when ¢ = 4.
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The eigenvalues of X are

i1
x;— = Zoxrjr’(23+l) (8 =0, 1, vevy t = 1), (4)
p=

where j = "/t , By analogy with the discrete Fourier transform, we may call
the sequence (xg, xI,..., xl_l) the skew discrete Fourier transform (skew DFT)
of (xo, Zys vees & The eigenvectors of all skew circulices are the col-

umns of the matrix

£-1)e

{77y (r, 8 =0, 1, ..., £ - 1).

We now list a few further properties of skew circulices to emphasize their
mathematical respectability. See also Section 4.

Just as the ordinary discrete Fourier transform is associated with se~
quences of period %, the skew DFT is associated with sequences of antiperiod ¢;
that is, doubly infinite sequences such that x,,; = -, for all integers r.
This is so in the sense that, if (x,) has antiperiod ¢, then the sum (4) is
unchanged if r runs through any complete set of residues modulo %, not neces-
sarily from O to ¢ - 1. Antiperiodicity dis a natural concept because, if a
sequence has period 2¢, it can be readily expressed as the sum of two sequences,
one with period ¢ and one with antiperiod Z.

The skew DFT has the inversion formula

-1
T == x;f'j'”ZS“), (5)
8=0

an application of which is mentioned in Section 4. The skew DFT also has the
convolution property that, if

t-1
2q = onpyq_r (@ =0, 1, vouy t = 1),
<

where either (x,) or (y,) has antiperiod ¢, then

2l =axlyl (e =0,1, ..., t - 1. (6)

8

Under the same circumstances, and if (x,) is real, the skew DFT of Z;a%yq+p is
Egy;, where the bar denotes complex conjugacy. In particular, the skew DFT of
Z@quq+r is |x;l2 so that, by the inversion formula, we have a "Parseval" for-
mula,

Tl =—;‘;E]x;f|2. N

Exercise: The skew circulant with top row (1, x, x?, e e xt'l) is equal to
(xt + 1)t°1,
2. CYCLOTOMOUS INTEGERS

A cyclotomic integer is defined (for example, by Edwards [2, pp. 81-88]) as a
number of the form

m=- 1

X:O crwr‘ ((.O = ezﬂi/m)’ (8)
r=
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where ¢gs €15 -++5 G,y are ordinary integers, positive, negative, or zero, and
where m is prime. However, if we generalize the definition by allowing m to be
even, and write m = 2t, then (8) becomes

t-1
Z(cr - cr+t)jr G = em'/t)-
r=0

Accordingly, for any positive integer ¢,

~1 t-1

Ta, it = ¥ ae™t, 9)
r=0 r=0
where each a,is an integer, will be called a cyclotomous integer (with respect
to t). It is cyclotomic with respect to 2%, under the generalized use of the
expression "cyclotomic.”

When ¢ = 1, the cyclotomous integers are the ordinary integers, and when

t = 2 they are the Gaussian integers (for example, LeVeque [6, pp. 129-131]).

Definition: We say that ¢ is ausgezeichnet if the corresponding cyclotomous
integers are "unique,” that is, if the equation

t-1 . t-1 .
2 a,dt = X bd”
r=0 r=0

implies that @, = b, (» =0, 1, ..., t = 1); or, in other words, if

t-1 i
2 A’
r=0

I
(o]

(10)

only if a, =0 (r =0, 1, ..., £ - 1).

Theorem 1: The ausgezeichnet integers are the powers of 2, namely 1, 2, 4, 8,
The othérs are unausgezeichnet.

Proof: If ¢ is not a power of 2, then it has an odd factor k > 1. Write £ =
ck, where 1 < ¢ < £. Then

(k- l)c)

0=1+gt=(1+341=-ge+g% - -+

It

Therefore, 1 - ¢ + j2¢ - -« 4 j&k-De

so t is unausgezeichnet.

To prove the theorem for ¢ = 2"(n =0, 1, 2, ...), we note first that the
result is obvious when # = 0 or 1 (and very easily proved when n = 2), and we
shall proceed by mathematical induction, assuming » > 2, so that # 2 4. Our
inductive assumption is that %¢ is ausgezeichnet.

Suppose that equation (10) is satisfied for some 'vector" (a,). Then

is a cyclotomous integer that vanishes,

il 21
a, + (a1 - at_l)cos E~+ (a2 - at_z)cos 7;—+ AN
Gst -~ D1 _
+(ay, ;- a%t+1)cos 7 =0 (11)

and
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. A
(a; + at_1)51n-z + (a, + a,_,)sin -t
Cst - L)m _

+ (a, 7

Le-1 + a

)sin 0. (12)

B+
Equation (11) can be rewritten as

[xo + (a, - a,_,)cos LU (a, - a,_,)cos %} + --;

T

+ [}al - a,_,)cos %—+ (a, - a,_j)cos %; + ---] = 0. (13)

Now, if m is any positive integer, cos(2mn/t) is a polynomial in ces(2n/t) with
integer coefficients, while cos[(2m + 1)n/¢t] is of the form

cos (2m : 1w

where K, with or without a subscript, denotes a rational function (with ra-
tional coefficients), not necessarily the same function on each occasion.
Equation (l4) can be deduced, for example, from Hobson [5,p. 106, formula (6)],
where in fact the rational function is a polynomial with integral coefficients.
It then follows from (13) that either both bracketed expressions vanish or else
cos{(m/t) is a rational function of cos(27/t). Therefore, if we can rule out
the latter possibility, we see from our inductive hypothesis that

_ 27 ki
= Rl:cos 75]cos <> (14)

=a2_a = ses = {J, (15)

0 1 t-1 t-2

Similarly, on rewriting (12) as

Lt - )m m
(a, + a,_yeos LEEZDT 4 ooy (a,, |+ ay,, Peos T =0, (16)
we infer that
a, ta,_,=a,ta, _,=- = 0 (17)
provided, once again, that, when ¢ = 4, 8, 16, ...,
cos(n/t) is not a rational function of cos(27m/%). (18)

Thus, if we can prove (18), it will follow that (15) and (17) are both true and,
therefore, a, = a, =a, = *+* = a,_; = 0, which would complete the inductive
proof of our theorem. It remains to prove statement (18). To do so, we for-
mulate a slightly more general result because the increased generality enables
the method of induction to work.

Theorem 2: When ¢ = 2" (n = 2, 3, 4, ...) neither cos(m/¢) nor sin(n/¢) is of
the form R[cos(27m/t)].

For its historical interest,we mention in passing that the product of all
the cosines is 2/m, as Frangois Viete or Franciscus Vieta, an eminent mathema-
tician, lawyer, and cryptanalyst, discovered in the seventeenth century. (See
Hobson [5, p. 128} for its proof.) Vieta's formula is often expressed in the

form
2 _ V2 V2 +V2 V24 V2 +v2
™ 2 2 2
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Proof of Theorem 2: When ¢ = 4, the result is obvious, so we take n > 2 and
proceed by induction. Suppose that cos(m/t) = R[cos(2n/¢)] and try to arrive
at a contradiction. The rational function of cos(2n/t) is of the form

¢, + ¢, cos(2n/t) + --+ + ¢p cosP(2n/t)

d, + d, cos(2n/t) + -+ + dg4 cos9(2n/t)

Pl[cos(4ﬂ/t)] + cos(ZW/t)Pz[cos(4ﬂ/t)]
" P, lcos(41/2)] + cos(2n/t)P, [cos(4n/E)]

where P., ..., P, are polynomials with integer coefficients. [See the remarks
following equation (14).] Multiply the numerator and denominator by

P,[cos(4m/t)] - cos(2m/t)P, [cos(4T/t)]

which, by the inductive hypothesis, does not vanish, and we obtain an equation
of the form

cos(m/t) = R, [cos(4m/t)] + cos(2n/t)R,[cos(4m/t)].

Squaring both sides gives, after dropping the arguments of R, and R, for the
sake of brevity,

L + % cos(2m/t) = Ri +[5+% cos(4ﬂ/t)]R§ + 2 cos(2m/¢)R\R,.

However, by the inductive hypothesis, cos(2m/t) is not a rational function of
cos(4m/t), so

L
2

R + cos®(2m/¢)R2

and
1= 4R1R2.
Therefore,
2
L = Ri + cos (2ﬂ/t)_
16R2
Therefore,
R: - %Hi + %E cos?(2m/t) = 0.
Therefore,

R? =% & /[% - % cos®(2n/t) = 4[1 * sin(2n/%)].
Therefore, sin(2m/t) is a rational function of cos(4m/t), which is false by the
inductive hypothesis. So cos(m/t) is not a rational function of cos(2m/t).
Similarly, if sin(w/t) is a rational function of cos(2m/¢), we have, as
before, in turn,

sin(m/t) = R,[cos(4m/t)] + cos(2n/¢)R,[cos(4n/E)],

% - % cos(2n/t) = Ry + [} + % cos(4m/t)IRZ + 2 cos(2m/t)R,R,,
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L= Rg + cosz(Zﬂ/t)Rf,

-1 = 4R.R ,

and
cos?(2m/t)

= R +
2
16R;
and, just as before, we deduce that sin(T/%) cannot be a rational function of
cos(2m/t). This completes the proof of Theorem 2 and hence of Theorem 1.

Theorem 3: When ¢t is ausgezeichnet, that is, a power of 2, the degree of the
algebraic integer j is t.

Proof: By Theorem 1 we know that 0 cannot be expressed as a cyclotomous integer
other than in the obvious manner; that is, J cannot satisfy an equation of de-
gree t — 1 or less having integral coefficients. But j does satisfy an equa-
tion of degree t, namely j* + 1 = 0, so j is an algebraic integer of degree
(precisely) t.

Theorem 4: 1If j is replaced by j2¢+! in (10), where s is a positive integer,
then Theorem 1 remains valid.

To see this, note first that the sequence of complex numbers

1, j2s+1, j2(2s+1), S j(t-l)(23+1)

is merely a permutation of the same sequence with s replaced by 0. Hence, the
substitution leaves the class: of cyclotomous numbers invariant. The remaining
details of the proofs of Theorems 1l and 2 go through with only trivial changes.

Theorem 4 shows that the eigenvalues of the integral skew circulix A with
top row (Ays Ays -ees a,_,), where the a's are integers, are all uniquely ex-
pressible as cyclotomous integers, when t is a power of 2. These cyclotomous
integers are called associates of one another and their product is det 4, the
determinant of A. This determinant is also known as the norm of any one of
these cyclotomous integers.

When ¢ = 2, the cyclotomous integers are the Gaussian integers a + Zb.
The associate of a + 2b is a - ib and the norm is a®+b?. The so-called units
of the ring of Gaussian integers are those whose reciprocals are also Gaussian
integers, that is, those with norm 1. These units are #*1 and #¢. It is fami-
liar that in the ring of Gaussian integers the 'fundamental theorem of arith-
metic" is true, that is, each Gaussian integer has a unique decomposition into
prime Gaussian integers, apart from units. For a rigorous statement of this
property, and for its proof, see, for example, Hardy and Wright [4, pp. 184-
186].

3. THE CYCLOTOMOUS INTEGERS WHEN t = L

Hardy and Wright [4, l.c., pp. 280-281] state the fundamental theorem for the
algebraic integers a + R7 + yV/2 + 87V2, where o and B are integers and y and §
are either both integers or both halves of odd integers. It is readily seen
that these are the same as the cyclotomous integers corresponding to t = 4,
namely a + bj + cj? + dj®, where j = e"/4 = (1 + 2)/V2. These again are the
same as the cyclotomic integers corresponding to m = 8, but the cyclotomous
form has the merit of unique representation. The proof of the fundamental
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theorem in this case can be obtained along the lines of the proof given in [4,
§12.8] for the Gaussian integers, which is the case m = 4. But when m = 2¢ =
16, or any higher power of 2, this proof does not work, and presumably in these
cases the decomposition into cyclotomous primes in not unique.

In the remainder of this section, we assume that ¢ = 4. Let a, b, ¢, and
d be integers, and let

a b e d
i1l e a9
-b - -d a
Then
3
det 4 =[] [a + bj23+1 T Cj2(23+1) + dj3(23+1)]. (20)
s=0

By pairing off the complex conjugate pair of factors with s = 0 and s = 3, and
the pair with s = 1 and s = 2, we see that

det 4 > 0. (21)

The determinant det 4 is also called the norm of a + bj + ¢j?+ dj° and will be
denoted by N(a, b, ¢, d).

The three ways of pairing off the four factors a of (20) (s = 0,1, 2,3),
lead naturally to three ways of writing the norm. Thus:

(@ + bj +cj?+di®)(a + bi® + ej® + dj%)
a? - b2 +c?-d%+ (G + 3%(d + ab - be + ed)
=a? - b? +¢c? - d*> + W2(ad + ab - be + cd).

Q
“r
Q
[
[]

But af = al, al = af, so ajal is the complex conjugate of afal and
N(a, by, ¢, d) = (a2 = b2 + ¢2 - d?)? + 2(ad + ab - be + cd)?. (22)
Again
afal = |af|? = |a + b-d, i<% +—£Li;g> ’
V2 V2
=<a+b—'-‘l>2+<c+ﬁ—d>2
V2 V2
=a?2 + b2 +c2 +d? +V2(-ad + ab + be + cd),
e N(a, b, ¢, d) = (a* + b* + ¢* + d*)? - 2(ad - ab - bc - ca)”. (23)
Finally,

alal = (@ + bj + cj® + di*)(a + bj® + cj*" + dj'®)
=la+eci+JB+dd]lla+ci -Jmb+di)] = (a+ci)? - i(b + di)?
=q? - e? + 2bd - 2(b? - d* - 2ac).

1986] 53



SKEW CIRCULANTS AND THE THEORY OF NUMBERS

So
N(a, by, e, d) = (a® - ¢*> + 2bd)? + (b? - d% - 2ac)?. (24)
Exercises:

(i) N(am b» Cs d) = N("Cl, _b: =Cs _d) = N(d, Cs b, CZ)'
(ii) WN(-1, -1, 2, x+1) = (x2+1)2, [Form N(x,0, 1,0)N(0, 1,1, 1).]

(i11) The product of the skew circulices whose top rows are (xz, 1,0, 0),
(x, -1,0,0), (x, 0,0, 1), and (x, 0,0, ~1) is (z* + 1)I.

(iv) Nz, 2 2+ 2, 2+ 3) =N@+2, x+3, x+ 1, ¢+ 1).

(v) ~N(, b, b, 0) -1, where b is an integer, is eight times the square
of the triangular number B(p - 1)/2.

(vi) 1If a positive integer v is not of the form a? + 282, then v? is of
the form h2 + k% + 222, where not more than one of the three terms can vanish.
(Hint: Use the equality of (23) and (24) combined with Bachet's theorem that
every positive integer is the sum of four squares.]

Theorem 5: N(a, b, ¢, d) vanishes only if a = b =¢ =d = 0.
For, from (23), N(a, b, ¢, d) = 0 implies that

a? + b2 +c?+d? = +/2(ad - ab - be - ed).
Therefore, a’ + b + ¢? + d2, being rational, must vanish, and the result fol-
lows. (Exercise: The rational skew circulices form a field.)

Thus, (21) can be sharpened to

det 4 2 1. (25)

The units of the ring of cyclotomous integers (with ¢ = 4) are the solu-
tions of the Diophantine equation

N(a, b, ¢, d) = 1. (26)
We shall adopt the abbreviation (a, b, ¢, d) for the number
a + bi + ej? + dj°8.

Theorem 6: The units of the ring of cyclotomous integers (with ¢ = 4) are:

tl, *j, i, #53
and

(Eqn’ ipn’ €4y 0), (0, €4, ipn’ Eqn)r (-Eqrp 0, EG e ipn)
and

(*p, s —€q,s 0s eq,)

where €=1 or e=-1, and;hlqn is the nth convergent in the continued fraction
for V2; that is,

} a+ ‘/E)n + Q- ﬁ)n, g = (1 + \/E)" - (1 - \/—z-)n . 27)
2 n
2v2
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These units are all of the form
JTA+ G+ 3D, (28)
where » and g are integers (positive, negative, or zero).

Recall first that the sequences of p,'s and g,'s begin with the values 1,
3, 7, 17, 41, 99, etc., and 1, 2, 5,12, 29,70, ..., and satisfy the recurrence
relations p, ., =2p, *+ P, 1> Guie1 =29, + q,.,. Moreover, (p,, q,) provides the
general solutions of the (Fermat-)Pell equations r? = 282 £ 1 (see, for exam-
ple, LeVeque [6, pp. 139-1441). 1In fact

2 _ 2 2 _ 2 .
Pyy = 2q9,, +1 and p, . =2, -1, (29)

which 1s true even when n = 0 if we write p, = 1, g, = 0 (as we must if we want
to satisfy the recurrence relations when n = 1).

To prove Theorem 6 we note, for example, that N(a, b, a, 0) = (2a% - b?)?2,
from (22), and hence ¥(q,s P,> 9, 0) = 1, from (29). Or we can simply check
that (1, I, 1, 0) is a unit, that its inverse is (1, 0, -1, 1), and then show
that all the units defined in (28) are of the forms mentioned in the rest of
the statement of the theorem.

That there are no units other than those mentioned in the theorem follows
from a deep theorem due to Dirichlet, concerning units in general; see, for
example, LeVeque [6, p. 75]. 1In particular, therefore, N{(a, b, ¢, d) = 1 im-
plies abed = 0.

As an example of Theorem 6, we have

29 41 29 0
4
H29, 41, 29, 0 = | 0 P AL 2o

-41 =29 0 29

Although N(eq,, *p,, €9, 0)= 1, we have N(q,, P, =G> O) = p, , so the signs
can have a big effect.

By (23), (29), and Theorem 6, we see that the only solutions of the simul-
taneous Diophantine equations

a> +p*+ct+d*=p,
(30)
ad - ab - be - ed = #q,,

are given by a=¢ =2q,, b =*p,, d =0, and the "antirotations" of these
solutions listed in the statement of Theorem 6. In particular, there is no
solution with abed # 0.

An allied question is what integers, and especially what primes, are ex-
pressible as integral skew circulants, not necessarily of order 4. For order
2, the problem is the familiar solved one of expressing integers as the sum of
two squares. Since the product of two integral skew circulices is a third one,
we know that the products of "expressible" numbers are also expressible (as
skew circulants of order 4).

If N a, bs ¢s d) is prime, then, by (24) it must either be 2, for example,
y(l, 1, 0, 0) = 2, or it is of the form 4g + 1. 1In the latter case, r and s
are of opposite parity, where r = a?-c¢? + 2bd and 8 = b? - 42 - 2qc. Suppose
that r is odd and s is even. Then g # ¢ (mod 2) and b = d (mod 2). By trying
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the four possibilities for the parities of (a, b, ¢, d) we see that r’+g? = 1
(mod 8), and the same conclusion is reached if r is even and s is odd. Thus,
the only odd primes that N(a, b, ¢, d) can equal are of the form 8z + 1. I
conjecture that every prime of this form is expressible as N(a, b, ¢, d), that
is, as an integral skew circulant, having found that this is true up to 1033,
as shown in Table 1. Call this Conjecture 1.

Table 1. Values of (a, b, ¢, d) for which p = N(a, b, ¢, d) where p is prime
and p = 1 (mod 8), for all p < 1033. Solutions are given for which
a, b, ¢, and d are all nonnegative.

P a b e d p a b ¢ d j2) a b e d
17 2 1 0 0 337 4 3 0 0 641 5 2 0 0
41 2 1 1 1 353 4 1 1 1 673 3 3 2 3
73 2 2 0 1 401 3 3 1 2 761 4 7 8 2
89 3 1 1 0 409 4 2 0 1 769 4 0 2 3
97 3 2 0 o0 433 4 0 2 1 809 4 3 0 2
113 3 0 1 1 449 4 2 3 0 857 1 6 3 1
137 3 3 2 1 457 3 1 3 2 881 5 4 0o o
193 3 1 2 1 521 3 2 1 3 929 5 1 2 1
233 1 4 1 1 569 6 8 7 0 937 5 0 1 3
241 4 2 1 0 577 5 3 1 0 953 5 1 1 2
257 4 1 0 0 593 4 2 1 2 977 5 5 2 1
281 5 5 3 0 601 8§ 11 9 1 1009 8 9 6 0
313 3 3 3 2 617 4 1 2 2 1033 7 9 8 1

Given a solution of N(a, b, ¢, d) = 1, we can multiply each of a, b, ¢, d
by any number and thus show that all squares are expressible. So Conjecture 1
implies that all numbers of the form 2qulp2 ..., where § is a square and p ,
Pys ... are primes of the form 8n + 1, are expressible, and I suspect that no
other numbers are. (Conjecture 2.) This conjecture is based on well over one
hundred numerical examples. i

It is familiar that primes of the form 4n+ 1, and a fortiori those of the
form 8n + 1, are expressible in essentially only one way as the sum of two
squares. Suppose that a prime p = 1 (mod 8) is r? + 52, where we can take »r > 0
and 8 > 0. Then, if Conjecture 1 is right, integers a, b, ¢, d exist, so that
the two terms in (24) satisfy.

|a® - ¢® + 2bd| = 7 or s

and (31)
|2 - d? - 2ac| = s or r.
Researches by Gauss, Lagrange, Cauchy, Eisenstein, Jacobi, and Stern (see

Smith [9, p. 269] included the remarkable result that a prime p of the form
8n + 1 is also uniquely expressible in the form %% + 2k2, where

+2h = (i?) (mod p). (32)

Conjecture 1 would then imply, from (22), that % and k can be written (by no
means uniquely) in the forms

h=la®> -b*+c?>-d?| and k= |ad+ ab - be + cd|. (33)
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We also know, by a theorem due to Gauss (see Smith [9, p. 268]), that p = r? +

32, where

2r = (gZ) (mod p). (34)

Formulas (31)-(34) can be helpful in finding values for a, b, ¢, d, that is, in
expressing a prime of the form 8n + 1 as a skew circulant.

Table 1 can be used for writing down, for a given prime p = 1 (mod 8), the
essentially unique solutions of p = r? + s* and p = h® + 2k? when p<1033. We
can also use the table (up to g = 1033), combined with (23), to obtain arbi-
trarily many solutions of p = a - 282, because we can multiply (a, b, ¢, d) by
any unit. For example,

(as by ¢, d) x (1, 1, 1, 0)

(a-c-d, a+b-d, a+b+c, b+c+d)
(a’s 'y ', d")

say; and we see, by elementary algebra, that

a'? + b’ + e’ +4d'"% =3@*+b*+c?+d?*) -4(ad-ab-be-cd),
while

a'd' = a'®' - b'le' - e'd’ = 3(ad-ab- be-cd) - 2(a®>+b%+c?+d?).

This forces us to notice that if (a,, B,) is a solution of p = a? - 282, then
another one is (un_l, Bn_l), where we have the "backward" recursion

Q,_, =30, - 4B, B,y = 3B, - 20,. (35)
Likewise, by forming (ay, by ¢, d)(1, 0, -1, 1), or from (35), we are led to the
"forward" recursion

On = 30“}1—1 + 4Bn-—l’ Bn = Zan—-l + 3671—1' (36)
Thus, given one solution, we can generate an unlimited supply (compare LeVeque
[6, p. 146], for example), by climbing up and down a ladder infinite in both
directions.

One can verify that equations (36) are equivalent to

(V8 - &m)N**Y + (W8 + am)p™tt1(32)72

O“VL
37)

Bn [2e - m\/8))\n+l - (22 + m\/§)un+l] (32)'1/2 s

where n is any integer, A =3 + J8, u=3- V8 =27, 22 - om? = p. Indeed,
using only the fact that Ay = 1, one can verify directly that if 22 - 2m® =z,
for any x, then a2- 283 = x also. For example, when p = 17, we can take & = 7,
m= 4, giving ...0_, = 37, 0.y =7, 0y =5, a; =23, 0o, = 133, ..., B_, = -26,
B.1 = 4, Bg = 2, By = 16, B, = 9%,

Equations (37), in their turn, are equivalent to

Oppy = 60, =0y g5 Byyy = 0B, = By s (38)
which can be used both forward and backward. Equations (37) and (38) are de-

cidedly Fibonaccian, so it is not surprising that the o's and B's have further
nice properties. For example,
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Ul gz = 2BnBrax = PYios

where vy, = 1, vy, =3, v, , = 6Y, - Y, q The even-numbered numerators of the
simple continued fraction for v2 are Yis Yoo Ygo
To conclude this section, consider one more conjecture, Conjecture 3: Let
p =1 (mod 8) be prime. Then all solutions of p = a® - 28% can be obtained
from (37), or recursively from (38), by starting with a single solution. That
there Zs a solution would be a consequence of Conjecture 1. The two conjec-—
tures combined imply that all solutions are of the form shown in formula (23).
(See Table 2.)
Table 2. Some solutions of p = a? - 282 where p =1 (mod 8), and the top rows
of the corresponding skew circulices. The signs preserve the recur-
rences Op4+y = 60y — Oy-1s PBn+1 = 6B, — Bn-1. In each case, o = a? +
b> + ¢ + d?> and B = ad - ab - be - cd as in formula (23).

p =17 p =41
o B a b c d o B a b c d
37 26 -2 4 -4 1 71 50 -1 5 -6 2
7 4 1 1 -2 1 13 8 2 1 -2 2
5 =2 2 1 0 0 7 -2 2 1 1 1
23 -16 2 3 3 1 29 =20 0 2 4 3
133 ~-94 -2 4 8 7 167 -118 -7 -1 6 9
775 =548 -17 -5 10 19 973 -688 -22 =17 -2 14

L4, DISCUSSION OF ALLIED MATTERS
Complicated Numbers

In an unpublished paper, the author called the skew circulix (1) a representa-
tion of a "complicated number"

Lo + Jy&y + o0+ gy 1Ty

and developed a theory of functions of a complicated variable (see Good [31).
The theory contained, for example, an easy generalization of the Cauchy-Riemann
equations, and a more difficult generalization of Cauchy's residue theorem for
integrals over contours encircling flat manifolds of dimension ¢ - 2. These
manifolds generalize the poles in the usual theory. Generalizations of Liou-
ville's theorem and analytic continuation were also given. The following dis-
cussion is extracted from that document to which it was, however, somewhat
incidental.

Generalized Trigonometry

The skew DFT is related to the following generalization of trigonometry.
Consider the differential equations
Dty = kty, (39)
Dty = -kty, (40)
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where Kk is a positive number and D means d/du. (The case t = 4 occurs in the
theory of a vibrating elastic bar; see Webster [1l, p. 139].) A fundamental
set of solutions (39) is given by the generalized hyperbolic functions of Ungar
[10]:

(r

r r+t r+ 2t
o =% + = Y 0, 1, vy £ - 1), (41)

M T e ot T ey T

while, for (40), a fundamental set contains the generalized trigonometric func-
tions

u’r ul"+t ur+2t
S s ey s ¥ My 2£)1 ~

(r=0,1, ..., ¢ - 1). (42)

(Compare to Muir [7, pp. 443-444], where the corresponding definitions contain
minor errors; and Ramanujan [8].) The solution of (39), with initial values
Cys Cis Cps wves Ci_q fOr Y, Dy, ou., D' 'y at u = 0, is Zenfr(ku), while that
of (40),with the same initial values, ile;g}(ku). Let us list some formulas
that are satisfied by these generalized trigonometric functions. The reader
should mentally consider what they state for the case ¢ = 2. We omit most of
the similar formulas for the functions fy(u#). The reader might like to verify,
however, that

TIf @17 = 671'F explou cos(2ms/t)]. (43)

=0

When ¢ - «, this gives a familiar formula for the Bessel function IO(Zu) as an
integral.
The formula
t-1
exp(uj23+1) = z gr (u)j!‘(23+l) A

r=0

[which is true also when J is replaced by §%®*! (p =0, 1, 2, ...)], is a di-
rect generalization of ''de Moivre's formula," which is the case ¢ = 2. As in
ordinary trigonometry we can obtain an addition formula by first deducing an
expression for exp[(u + y)g2s+1l] from (44), and then taking the inverse skew
DRT. Another method, which is closely related, is to note that

e = g I + g, W)d + -+ +g, (I (45)

is a skew circulix whose'eigenvalues are exp(uj2s+tl) (s =0, 1, ..., t - 1).
Hence,

t-1
g, +y) = EOET,SQS(U)QHS(ZJ) (ry 8§ =0, 1, ..., t - 1), (46)
5

where €5, =1 if » 2 s and €5,5 = -1 if » < s. These identities generalize
the usual formulas for cos(u + y) and sin(u + y). It follows, for example,
that g,(nu) is a homogeneous polynomial in go(u), eees gt_l(u) (n=1, 2, 3,

It seems fair to conclude that the skew circulix has not previously been
given the attention that it merits.
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