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1. SKEW CIRCULICES AND SKEW DISCRETE FOURIER TRANSFORMS 

The matrices 

x y 

provide a familiar representation of complex numbers x + iy. Let us consider 
the more general matrix 

-x, 

t-3 

, . Xn 

(1) 

where t is a positive integer, and x0, x19 , X + are real numbers. The de-
terminant of X is called a sfcew oivculant by Muir [7, p. 442] and by Davis [1, 
pp. 83-85], and we call X a skew circulix. We can write X in the form 

X = xQI + x±J + +xt_1J" (2) 

where I is the t x t unit matrix and 

J = 

0 
0 

0 
-1 

1 
0 

0 
0 

0 
1 

0 
0 

0 . 
0 . 

0 . 
0 . 

. . 0 

. . 0 

. . 0 

. . 0 

0 
0 

1 
0 

(3) 

Since Jt - -J, it follows that all polynomials in J can be expressed as poly-
nomials of degree at most £ - 1, and every such polynomial is a skew circulix. 
Hence, all skew circulices commute with each other. 

On a point of terminology, a skew circulix is not in general a skew-sym-
metric matrix although it can be. For example, J2 is both a skew circulix and 
a skew-symmetric matrix when t = 4. 
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The eigenvalues of X are 

4 = tv'<28+1) (s - 0, 1, ...,*- 1), (4) 
r- 0 

where j = g^A . By analogy with the discrete Fourier transforms we may call 
the sequence (#J, x\9 ...5xJ"_1) the skew discrete Fourier transform (skew DFT) 
of (x 9 X± , , . . 9 xt _ ) . The eigenvectors of all skew circulices are the col-
umns of the matrix 

Ur(2s+1)} (r, s = 0, 1 * - 1). 

We now list a few further properties of skew circulices to emphasize their 
mathematical respectability. See also Section 4. 

Just as the ordinary discrete Fourier transform is associated with se-
quences of period t9 the skew DFT is associated with sequences of antiperiod t; 
that is, doubly infinite sequences such that xr + t = -xT for all integers r. 
This is so in the sense that, if (xr) has antiperiod t, then the sum (4) is 
unchanged if r runs through any complete set of residues modulo ts not neces-
sarily from 0 to t - 1. Antiperiodicity is a natural concept because, if a 
sequence has period 2t9 it can be readily expressed as the sum of two sequences, 
one with period t and one with antiperiod t. 

The skew DFT has the inversion formula 

V 3=0 

an application of which is mentioned in Section 4. The skew DFT also has the 
convolution property that, if 

t- l 
Zq = E Xryq-r (<? = 0 , 1 , . . . , £ - 1) , 

r= 0 

where either (xr) or (z/p) has antiperiod t9 then 

4 = 4y\ (s = o, i, . . . , t - i ) . • (6) 
Under the same circumstances, and if (xr) is real, the skew DFT of Hrxryq+r is 
^sUs » where the bar denotes complex conjugacy. In particular, the skew DFT of 
YtqXqxq+T is \xl|2 so that, by the inversion formula, we have a "Parseval" for-
mula, 

E < =|Ekll2. (7) 

Exercise: The skew circulant with top row (1, x9 x2, . .., xt~1) is equal to 
(xt + l ) t _ 1 . 

2„ CYCL0T0M0US INTEGERS 

A cyolotomio integer is defined (for example, by Edwards [2, pp. 81-88]) as a 
number of the form 

"Ecru* (a) = e^i/m)9 (8) 
r~ 0 
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where CQ9 O1S . .., em-i a r e ordinary integers9 positive, negative, or zero, and 
where m is prime. However, if we generalize the definition by allowing m to be 
even, and write m = 2£, then (8) becomes 

r= 0 

Accordingly, for any positive integer £, 

'ZXJ* = E'a,^^* , (9) 
2" = 0 ^ = 0 

where each av is an integer, will be called a cyolotomous integer (with respect 
to £). It is cyclotomic with respect to 2£, under the generalized use of the 
expression "cyclotomic." 

When £ = 1, the cyclotomous integers are the ordinary integers, and when 
£ = 2 they are the Gaussian integers (for example, LeVeque [6, pp. 129-131]). 

Definition: We say that £ is ausgezeichnet if the corresponding cyclotomous 
integers are "unique," that is, if the equation 

X> P j r = E M 2 , 

P = 0 r = Q 

i m p l i e s t h a t ar = br ( r = 0 , 1, . . . , £ - 1 ) ; o r , i n o t h e r words , i f 

X X J P = o (io) 

r = 0 

only If ar = 0 ( r = 0 , 1, . . . , £ - 1 ) . 
Theorem 1: The ausgezeichnet integers are the powers of 2, namely 1, 2, 4, 8, 
... . The others are unausgezeichnet. 

Proof: If £ is not a power of 2, then it has an odd factor k > 1. Write £ = 
ek, where 1 < c < £. Then 

0 = 1 + jt = (1 + J-C)(1 „ jo + j2c „ . . . + j&-»°)m 

Therefore, 1 - j c + j 2 c - ... + j(k-i)e ̂ s a CyCiotomous integer that vanishes, 
so £ is unausgezeichnet. 

To prove the theorem for £ = 2n (n = 0, 1, 2, — ) , we note first that the 
result is obvious when n = 0 or 1 (and very easily proved when n = 2), and we 
shall proceed by mathematical induction, assuming n ^ 2, so that £ ̂  4. Our 
inductive assumption is that %£ is ausgezeichnet. 

Suppose that equation (10) is satisfied for some "vector" (aP). Then 

^ 0 + K - at-l)COS f + (a2 " a t - 2 ) C O S f L + '•* 

+ (*Ht-l ~ < V + l > c o s (ht ~t
 1)1T = 0 (11) 

and 

1986] h3 



SKEW CIRCULANTS AND THE THEORY OF NUMBERS 

{a1 + at_1)s±n — + (a2 + at_2)sm — + • • • 

+ K*-i + a^+1)sin fet" 1)1T = 0. (12) 

Equation (11) can be rewritten as 

a0 + (a2 - at_2)cos - ^ + (ah - at_h)cos ~~ + • • -J 

[ IT 3lT 1 

(ax - at_1)cos — + (a3 - at_3)cos — + • • • = 0. (13) 
Now, if m is any positive integer, cos(2rrm/t) is a polynomial in cos(2Tr/t) with 
integer coefficients9 while cos[(2m + l)Tr/t] is of the form 

(2m + 1)TT D cos - — — = R 2TT cos — cos -̂  , (14) 

where i?, with or without a subscripts denotes a rational function (with ra-
tional coefficients), not necessarily the same function on each occasion* 
Equation (14) can be deduced, for example, from Hobson [5, p. 106, formula (6)], 
where in fact the rational function is a polynomial with integral coefficients. 
It then follows from (13) that either both bracketed expressions vanish or else 
cos(7r/t) is a rational function of cos(2Tr/t). Therefore, if we can rule out 
the latter possibility, we see from our inductive hypothesis that 

a0 " ai - at-l " a2 " at-2 - •" = °' ( 1 5 ) 

Similarly, on rewriting (12) as 

(a± + at_1)cos — — ^ — — + • • • + (a^t-1 + a^t+ ̂ cos j = 0, (16) 

we infer that 

ai + at-l = a2 + at-2 = See = °  ( 1 7 ) 

provided, once again, that, when t = 4, 8, 16, . .., 

cos(Tr/£) is not a rational function of COS(2TT/£). (18) 

Thus, if we can prove (18), it will follow that (15) and (17) are both true and, 
therefore, aQ - a± - a2 = • • • = at_1 - 0, which would complete the inductive 
proof of our theorem* It remains to prove statement (18). To do so, we for-
mulate a slightly more general result because the increased generality enables 
the method of induction to work. 

Theorem 2: When t = 2n (n = 2, 3, 4, ...) neither cos(i\/t) nor sin(ir/t) is of 
the form i?[cos(2ir/t) ] . 

For its historical interest, we mention in passing that the product of all 
the cosines is 2/TT, as Francois Viete or Franciscus Vieta, an eminent mathema-
tician, lawyer, and cryptanalyst, discovered in the seventeenth century. (See 
Hobson [5, p. 128] for its proof.) Vieta?s formula is often expressed in the 
form 

1 = ^L. i/2 + V2 . V2 + /^^V2 o 
7T 2 ' 2 2 " 
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Proof of Theorem 2: When £ = 4 , t he r e s u l t i s obvious 9 so we t ake n > 2 and 
proceed by induc t ion* Suppose t h a t c o s ( i r / t ) = P[cos(27i7 t ) ] and t r y t o a r r i v e 
a t a c o n t r a d i c t i o n . The r a t i o n a l func t ion of COS(2TT/£) i s of t h e form 

oQ + o1 cos(2u/t) + • • • + op COS P (2TT/£ ) 

dQ + d± COS(2TT/£) + • • • +-dq COS^(2TT/£) 

P 1 [ c o s ( 4 i r / t ) ] 4- C O S ( 2 T T / £ ) P 2 [ C O S ( 4 T T / £ ) ] 

= P 3 [ c O S ( 4 l T / t ) ] + C O s ( 2 7 T / t ) P j c O s ( 4 7 T / t ) ] * 
\ 

where P , . . . , P 4 a r e polynomials w i th i n t e g e r c o e f f i c i e n t s . [See t h e remarks 
fo l lowing equa t ion ( 1 4 ) . ] Mu l t i p ly t he numerator and denominator by 

P 3 [ C O S ( 4 T T / £ ) ] - cos(2Tr/ t )P l f [cos(47T/t)] 

which, by the i n d u c t i v e h y p o t h e s i s , does no t v a n i s h 9 and we o b t a i n an equa t ion 
of t he form 

c o s ( i r / t ) = P 1 [ c o s ( 4 i T / t ) ] + C O S ( 2 T T / £ ) # 2 [ C O S ( 4 7 T / £ ) ] . 

Squar ing bo th s i d e s g i v e s , a f t e r dropping t he arguments of R and i?2 fo r the 
sake of b r e v i t y 9 

k + k COS(2TT/£) = Rz + [k + k cos cos(2Tr/ t ) i?1P2 . 

However9 by t h e i n d u c t i v e h y p o t h e s i s 9 cos(2iT/t) i s no t a r a t i o n a l f u n c t i o n of 
cos(4 iT/ t ) 9 so 

k = A* + cos 2 (2Tr / t )P 2 

and 

1 = ^ R 2 . 

There fo re 9 

, _ 2 . C O S 2 ( 2 T T / £ ) 
^ - hi + : * 

16P2 

T h e r e f o r e , 
Rt ~ %Rl + j ^ c o s 2 ( 2 T T / t ) = 0. 

T h e r e f o r e , 

P i = k ± V[k ~ k cos2(2n/t) = hi I ± s in (2TT/ t ) ] . 

T h e r e f o r e , s in(2Tr/ t ) i s a r a t i o n a l f unc t i on of cos(47r/£)9 which i s f a l s e by t h e 
i n d u c t i v e h y p o t h e s i s . So c o s ( i r / t ) i s no t a r a t i o n a l f unc t i on of c o s ( 2 i r / t ) . 

S i m i l a r l y , i f s i n ( i r / t ) i s a r a t i o n a l f unc t i on of C O S ( 2 T T / £ ) 9 we have , as 
b e f o r e , i n t u r n 9 

s in(7r/£) = P 3 [ cos (4Tr / t ) ] + cos(2u/t)Rk [cos(4ir /£) ] , 

k - h COS(2TT/£) = R2
3 + [k + k cos (4Tr / t ) ]P 2 + 2 cos(2n/t)R3Rlt, 
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h = R\ + cos2(2iT/t) i?J9 

- 1 = 4 ^ , 
and 

^ = R l + COS2(27T/t) 

and, just as before, we deduce that sin(Tr/t) cannot be a rational function of 
cos(27r/£). This completes the proof of Theorem 2 and hence of Theorem 1. 

Theorem 3- When t is ausgezeichnet, that is, a power of 2, the degree of the 
algebraic integer j is t . 

Proof: By Theorem 1 we know that 0 cannot be expressed as a cyclotomous integer 
other than in the obvious manner; that is, j cannot satisfy an equation of de-
gree t - 1 or less having integral coefficients. But j does satisfy an equa-
tion of degree t, namely j* + 1 = 0, so j is an algebraic integer of degree 
(precisely) t, 

Theorem k: If j is replaced by j 2 s + l in (10), where s is a positive integer, 
then Theorem 1 remains valid. 

To see this, note first that the sequence of complex numbers 

1, J2s+1, J2<2«+1>, ..., j(*-D(2a+l) 

is merely a permutation of the same sequence with s replaced by 0. Hence, the 
substitution leaves the class; of cyclotomous numbers invariant. The remaining 
details of the proofs of Theorems 1 and 2 go through with only trivial changes. 

Theorem 4 shows that the eigenvalues of the integral skew circulix A with 
top row (aQ, ax, ..., <^t_1)9 where the afs are integers, are all uniquely ex-
pressible as cyclotomous integers, when t is a power of 2. These cyclotomous 
integers are called associates of one another and their product is det A9 the 
determinant of A. This determinant is also known as the norm of any one of 
these cyclotomous integers. 

When t = 2, the cyclotomous integers are the Gaussian integers a + ib. 
The associate of a + ib is a - ib and the norm is a2 + b2. The so-called units 
of the ring of Gaussian integers are those whose reciprocals are also Gaussian 
integers, that is, those with norm 1. These units are ±1 and ±i. It is fami-
liar that in the ring of Gaussian integers the "fundamental theorem of arith-
metic" is true, that is, each Gaussian integer has a unique decomposition into 
prime Gaussian integers, apart from units. For a rigorous statement of this 
property, and for its proof, see, for example, Hardy and Wright [4, pp. 184-
186]. 

3. THE CYCLOTOMOUS INTEGERS WHEN t = k 

Hardy and Wright [4, I.e., pp. 280-281] state the fundamental theorem for the 
algebraic integers a + $i + yv2 4- 6iv2, where a and 3 a r e integers and y and 6 
are either both integers or both halves of odd integers. It is readily seen 
that these are the same as the cyclotomous integers corresponding to t = 4, 
namely a + bj + cj2 + dj3, where j = g1^/4 = (1 + i)/Jl. These again are the 
same as the cyclotomic integers corresponding to m = 8, but the cyclotomous 
form has the merit of unique representation. The proof of the fundamental 
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theorem in this case can be obtained along the lines of the proof given in [4* 
§12,8] for the Gaussian integers, which is the case m = 4* But when m = It = 
16s or any higher power of 29 this proof does not works and presumably in these 
cases the decomposition into cyclotomous primes in not unique. 

In the remainder of this section, we assume that t = 4. Let a9 bs e9 and 
d be integers, and let 

A = 

a b e d 
-d a b c 
-a -d a b 
-b -e -d a 

(19) 

Then 

det A = n [a + bj28+l + < ? j 2 ( 2 s + 1 ) + # 3 < 2 * + 1 > ] . 
s = 0 

(20) 

By pairing off the complex conjugate pair of factors with s = 0 and s = 3* and 
the pair with s = 1 and s = 29 we see that 

det A > 0. (21) 

The determinant det A is also called the norm of a + Z?j + cj2+ dj3 and will be 
denoted by N(a9 b5 e9 d). 

The three ways of pairing off the four factors a of (20) (s = 0S 19 2S 3), 
lead naturally to three ways of writing the norm. Thus: 

a\a\ = (a + bj + ej2 + ^73)(a + 2?j3 + ej6 + dj9) 

= a2 - b2 + e2 - d2 + (j + j3)(ad + ab - be + ad) 

= a2 - b2 + e2 - d2 + i\fl(ad + ab - be + cd). 

t „t But a j = a^s a^ = a | s so a\a\ i s t h e complex con juga te of a\a\ and 

tf(a, £9 e9 d) = (a 2 - £>2 + c 2 - d 2 ) 2 + 2{ad + ab - be + ed)2 . (22) 

Again 

ata+ 7 * 1 2 a H 1- ^ i c + 
1/2 

- I a + ——— 1 + hbir) 
a2 + b2 + e2 + d2 + >/2(-ad + ab + be + e d ) , 

and 
(23) tf(a, £* o9 d) = (a 2 + b2 + <?2 + d 2 ) 2 - 2{ad - ab - be - ea)2» 

F i n a l l y , 

a\a\ = (a + 2>j + <?j2 + dj3)(a + £ j 5 + ej10 + d j 1 5 ) 

= [a + ci + j(b + di)][a + ei - j (b + di)] = (a + ei)2 - i(Z? + di)2 

= a2 - a2 + 2bd - £«>2 - d2 - 2ae) . 
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So 

N(a9 b9 o9 d) = (a2 - c2 + 2bd)2 + (b2 - d2 - 2ao)2. (24) 

Exercises: 

(!) N(a9 b9 c9 d) = N-(-a9 -&, -e, -d) = #W» e, 2?, a). 

(II) N(-l9 x- 1, x, x + 1) = (x2 + I)2. [Form N(x9 09 1, 0)ff(0, 1, 1, 1).] 

(Ill) The product of the skew circulices whose top rows are (x9 1*0, 0), 
(xs -1,0,0), (xs 0,0, 1), and (a;, 0,0,-1) is {xh + 1)J. 

(iv) #(#, x, x + 2, x + 3) = 2!/(x + 2, x + 3 , x + 1, x + 1). 

(v) N(ls b5 b$ 0 ) - 1, where b is an integer, is eight times the square 
of the triangular number b(b - l)/2« 

(vf) If a positive integer V is not of the form a2 + 2B2, then v2 is of 
the form h2 + k2 + 2£2, where not more than one of the three terms can vanish,, 
(Hint: Use the equality of (23) and (24) combined with Bachetfs theorem that 
every positive integer is the sum of four squares*] 

Theorem 5: N(a9 b9 o9 d) vanishes only l£a=b=e-d=0* 

For, from (23), N(as b9 c9 d) = 0 implies that 

a2 + b2 + o2 + d2 = ±/2(ad - ab - be - ad). 

Therefore, a + b2 + c2 + d2, being rational, must vanish, and the result fol-
lows. (Exercise: The vattonat skew circulices form a field.) 

Thus, (21) can be sharpened to 

det A > 1. (25) 

The units of the ring of cyclotomous integers (with t = 4) are the solu-
tions of the Diophantine equation 

N(a9 b9 c9 d) = 1. (26) 

We shall adopt the abbreviation (a, b9 c9 d) for the number 

a + bj + cj2 + djs. 

Theorem 6: The units of the ring of cyclotomous integers (with t ~ 4) ares 

±1, ±j, ±£, ±j3 

and 
(e<7n? ±pn, eqn> 0 ) , (0 , e ^ n , ± p n , e q n ) , ( - e q n , 0 , e q n , ±pn) 

and 
(±pn* - e q n 9 0 , eqn) 

where e = 1 or e = -l, and p /^ is the nth convergent in the continued fraction 
for y/2; that is, 

(i + nr + (i - 72)̂  (i + sir - (i - nr ,97* 
p = — — — o $ a„ = — — • \£i) 

2 n in 
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These units are all of the form 

j r d + j + j 2 ) s , 

where r and s are integers (positive, negative, or zero). 

(28) 

Recall first that the sequences of pn
fs and an

?s begin with the values 1, 
3, 7, 17, 41, 99, etc., and 1, 2, 5, 12, 29, 70, ..., and satisfy the recurrence 
relations pn + 1 = 2pn + pn„x, qn + 1 = 2qn + ^n_1. Moreover, (pn, an) provides the 
general solutions of the (Fermat-)Pell equations r = 2s ± 1 (see, for exam-
ple, LeVeque [6, pp. 139-144]). In fact 

pi = 2q2 +1 
^In " In 

and Pln-l 2 <7; (29) 

which is true even when n = 0 if we write p0 = 1, qQ = 0 (as we must if we want 
to satisfy the recurrence relations when n = 1). 

To prove Theorem 6 we note, for example, that N(as b$ a, 0) = (2a2 -2?2)2, 
from (22), and hence N(qnS pn$ qn, 0) = 1, from (29). Or we can simply check 
that (1, 1, 1, 0) is a unit, that its inverse is (1, 0, -1, 1), and then show 
that all the units defined in (28) are of the forms mentioned in the rest of 
the statement of the theorem, 

That there are no units other than those mentioned in the theorem follows 
from a deep theorem due to Dirichlet, concerning units in general; see, for 
example, LeVeque [6, p. 75]. In particular, therefore, N(a9 b3 as d) - 1 im-
plies abed = 0. 

As an example of Theorem 6, we have 

N(29s 41, 29, 0) 

29 
0 
29 
41 

41 
29 
0 

-29 

29 
41 
29 
0 

0 
29 
41 
29 

= 1. 

p , so the signs Although N(eqn9 ±pn, eqnS 0)= l,we have N(qn, pn, -qn9 0) 
can have a big effect. 

By (23), (29), and Theorem 6, we see that the only solutions of the simul' 
taneous Diophantine equations 

a2 + b2 + e2 + d2 = p2n, 

ad ~ ab - bo - od = ±q2n 

(30) 

are given by a = o = iqnJ b = ±pn , d = 0, and the "antirotations" of these 
solutions listed in the statement of Theorem 6 „ In particular, there is no 
solution with abed ^ 0, 

An allied question is what integers, and especially what primes, are ex-
pressible as integral skew circulants, not necessarily of order 4. For order 
2, the problem is the familiar solved one of expressing integers as the sum of 
two squares. Since the product of two integral skew circulices is a third one, 
we know that the products of "expressible11 numbers are also expressible (as 
skew circulants of order 4). 

If N(a» b» Cj d) is prime, then, by (24) it must either be 2, for example, 
N(ls 1» 0, 0) = 2, or it is of the form 4g + 1 * In the latter case, r and s 
are of opposite parity, where r = a2 - c2 + 2bd and s 2ac. Suppose 
that r is odd and s is even. Then a £ c (mod 2) and b - d (mod 2). By trying 
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the four possibilities for the parities of (a9 b9 c9 d) we see that r2+ s2 = 1 
(mod 8) 9 and the same conclusion is reached if r is even and s is odd* Thus, 
the only odd primes that N(as b9 c9 d) can equal are of the form 8n + 1. I 
conjecture that every prime of this form is expressible as N(a9 b9 o9 d), that 
is* as an integral skew circulant9 having found that this is true up to 1033s 
as shown in Table 1. Gall this Conjecture 1. 

Table 1. Values of (a9 b9 e9 d) for which p = N(as b9 o9 d) where p is prime 
and p = 1 (mod 8), for all p < 1033. Solutions are given for which 
a9 b9 c9 and d are all nonnegative. 

P 

17 
41 
73 
89 
97 
113 
137 
193 
233 
241 
257 
281 
313 

a 

2 
2 
2 
3 
3 
3 
3 
3 
1 
4 
4 
5 
3 

b 

1 
1 
2 
1 
2 
0 
3 
1 
4 
2 
1 
5 
3 

c 

0 
1 
0 
1 
0 
1 
2 
2 
1 
1 
0 
3 
3 

d 

0 
1 
1 
0 
0 
1 
1 
1 
1 
0 
0 
0 
2 

P 

337 
353 
401 
409 
433 
449 
457 
521 
569 
577 
593 
601 
617 

a 

4 
4 
3 
4 
4 
4 
3 
3 
6 
5 
4 
8 
4 

b 

3 
1 
3 
2 
0 
2 
1 
2 
8 
3 
2 
11 
1 

c 

0 
1 
1 
0 
2 
3 
3 
1 
7 
1 
1 
9 
2 

d 

0 
1 
2 
1 
1 
0 
2 
3 
0 
0 
2 
1 
2 

P 

641 
673 
761 
769 
809 
857 
881 
929 
937 
953 
977 
1009 
1033 

a 

5 
3 
4 
4 
4 
1 
5 
5 
5 
5 
5 
8 
7 

2> 

2 
3 
7 
0 
3 
6 
4 
1 
0 
1 
5 
9 
9 

c 

0 
2 
8 
2 
0 
3 
0 
2 
1 
1 
2 
6 
8 

d 

0 
3 
2 
3 
2 
1 
0 
1 
3 
2 
1 
0 
1 

Given a solution of tf(a, &, o9 d) = 1, we can multiply each of a* b9 c9 d 
by any number and thus show that all squares are expressible. So Conjecture 1 
implies that all numbers of the form 2qSp p ..., where S is a square and p , 
p2, ... are primes of the form Sn + 1, are expressible, and I suspect that no 
other numbers are. (Conjecture 2.) This conjecture is based on well over one 
hundred numerical examples. 

It is familiar that primes of the form 4n+ 1, and a fortiori those of the 
form 8n + 1, are expressible in essentially only one way as the sum of two 
squares. Suppose that a prime p = 1 (mod 8) is r2 + s2

9 where we can take r > 0 
and s > 0. Then9 if Conjecture 1 is right, integers as b9 as d exist, so that 
the two terms in (24) satisfy 

\a2 - a2 + 2bd\ = r or s 
and (31) 

\b2 - d2 - 2ac\ = s or r. 

Researches by Gauss, Lagrange, Cauchy, Eisenstein, Jacobi, and Stern (see 
Smith [9, p. 269] included the remarkable result that a prime p of the form 
8n + 1 is also uniquely expressible in the form h2 + 2k2* where 

±2/z E (^ (mod p) . (32) 

Conjecture 1 would then imply, from (22), that In and k can be written (by no 
means uniquely) in the forms 

h = \a2 - b2 + c2 - d2\ and k = \ad + ab - bo + od\ . (33) 

56 [Feb. 



SKEW C1RCULANTS AND THE THEORY OF NUMBERS 

We also know, by a theorem due to Gauss (see Smith [9, p. 268]), that p = r2 + 
s2, where 

2r = (£) (mo d P>" O*) 

Formulas (31)-(34) can be helpful in finding values for a, b9 c9d9 that is, in 
expressing a prime of the form 8ft + 1 as a skew cireulant. 

Table 1 can be used for writing down, for a given prime p E 1 (mod 8), the 
essentially unique solutions of p = r2 + s2 and p = h2 + 2k2 when p< 1033. We 
can also use the table (up to p = 1033), combined with (23), to obtain arbi-
trarily many solutions of p = a -232

5 because we can multiply (a, b9 c9 d) by 
any unit. For example, 

( a , b9 c9 d) x ( l 9 l , l , 0) = (a-c-d9 a+b-d9 a + b + c9 b+c+d) 

= ( a ' , br
9 c \ d<) 

say; and we see, by elementary algebra, that 

a'2 + b'2 + c'2 + dt2 = 3(a2 + b2 + c2 + d2) - k(ad-ab-be-ed) 9 

while 

a'd' - a'b' - b'cr - o'd' = 3(ad- ab- be- ad) - 2(a2 + b2 + o2 + d2) . 

This forces us to notice that if (an, 3n) i-s a solution of p = a2 - 232* then 
another one is (an_±9 3n_x)5 where we have the "backward" recursion 

<Vi = 3an - 43n, ?„.! = 33n - 2a„. (35) 

Likewise, by forming (a, &, c, J)(l, 0, -1, 1), or from (35), we are led to the 
"forward" recursion 

<*» = 3an_, + 43nL1, S„ = 2an.x + 3 3 ^ . (36) 

Thus, given one solution, we can generate an unlimited supply (compare LeVeque 
[6, p. 146], for example), by climbing up and down a ladder infinite in both 
directions. 

One can verify that equations (36) are equivalent to 

an = [iVs - 4m)An + 1 + (iVs + bm)\in + 1] ( 3 2 ) ^ 
(37) 

3 n = [(2£ - m/S)Xn + 1 - (21 + wv / 8)y n + 1 ] (32)"" 2 , 

where ft is aft2/ integer, A = 3 + /8, u = 3-V/8 = A"1, £2 - 2/?72 = p. Indeed, 
using only the fact that X]l = 1, one can verify directly that if I2 - 2m2 *= x, 
for any x9 then a2- 2|322 = x also. For example, when p = 17, we can take £ = 7, 
m = 4, giving ...a_2 = 37, a_x = 7, a0 = 5, ax = 23, a2 = 133, ..., 3_2 = -26, 
3-! = -4, 30 = 2, 3i = 16, 32 = 94, ... . 

Equations (37), in their turn, are equivalent to 

an+l = 6an ~ an-l> $n+l = 63„ ~ Bw-1» (38) 

which can be used both forward and backward. Equations (37) and (38) are de-
cidedly Fibonaccian, so it is not surprising that the a?s and 3fs have further 
nice properties. For example, 
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an^n+k " 2Bn6n+k = PYfe» 

where Y = 1, Y = 3, Y = 6Y™ - Y • The even-numbered numerators of the 
•0 ' ' 1 - ' n +1 y1 ' n -1 

simple continued fraction for v2 are y^ T2> Y3» ••• • ' 
To conclude this section, consider one more conjecture. Conjecture 3: Let 

p E l (mod 8) be prime. Then all solutions of p = a2 - 2$2 can be obtained 
from (37), or recursively from (38), by starting with a single solution. That 
there is a solution would be a consequence of Conjecture 1. The two conjec-
tures combined imply that all solutions are of the form shown in formula (23). 
(See Table 2.) 

Table 2. Some solutions of p = a2 - 232 where p E 1 (mod 8), and the top rows 
of the corresponding skew circulices. The signs preserve the recur-
rences an+1 = 6an - a.n-i9 3n+i = 63n - 3n-i- In each case, a = a2 + 
b2 + a2 + d2 and 3 = ad - aZ? - £>e - cd as in formula (23). 

a 

37 
7 
5 
23 
133 
775 

3 

26 
4 
-2 
-16 
-94 
-548 

p = 17 

a 

-2 
1 
2 
2 
-2 
-17 

2? 

4 
1 
1 
3 
4 
-5 

Q 

-4 
-2 
0 
3 
8 
10 

d 

1 
1 
0 
1 
7 
19 

a 

.71 
13 
7 
29 
167 
973 

3 

50 
8 
-2 
-20 
-118 
-688 

p = 41 

a b 

-1 5 
2 1 
2 1 
0 2 
-7 -1 
-22 -17 

c 

-6 
-2 
1 
4 
6 
-2 

d 

2 
2 
1 
3 
9 
14 

4. DISCUSSION OF ALLIED MATTERS 

Complicated Numbers 

In an unpublished paper, the author called the skew circulix (1) a representa-
tion of a "complicated number" 

XQ + Q1X1 + •••• + d-t~\Xt-\ 

and developed a theory of functions of a complicated variable (see Good [3]). 
The theory contained, for example, an easy generalization of the Cauchy-Riemann 
equations, and a more difficult generalization of Cauchy's residue theorem for 
integrals over contours encircling flat manifolds of dimension t - 2. These 
manifolds generalize the poles in the usual theory. Generalizations of Liou-
ville's theorem and analytic continuation were also given. The following dis-
cussion is extracted from that document to which it was, however, somewhat 
incidental. 

Generalized Trigonometry 

The skew DFT is related to the following generalization of trigonometry. 
Consider the differential equations 

Dty = fc*y, (39) 

Dty = -kty, (40) 

58 [Feb. 



SKEW CIRCULANTS AND THE THEORY OF NUMBERS 

where k is a positive number and D means d/du* (The case t = 4 occurs in the 
theory of a vibrating elastic bar; see Webster [11, p. 139].) A fundamental 
set of solutions (39) is given by the generalized hyperbolic functions of Ungar 
[10]: 

^ < M > = ^ + JFT^)i +
 (r + 2t)i + ••• ( * - o , i , . . . . * - i ) . (4D 

while3 for (40), a fundamental set contains the generalized trigonometric func-
tions 

g (u) = —- - , . ... + f \ n... - ••• (P = 0, 1, ..., t - 1). (42) 
^r rl (p + t)l (p + 2t)l 

(Compare to Muir [7S pp. 443-444], where the corresponding definitions contain 
minor errors; and Ramanujan [8].) The solution of (39) 9 with initial values 
cQ, c19 o13 ...9 ct_1 for y9 Dy, ...5 Dt~1y at u = 0, is Hcrfr(ku)9 while that 
of (40) s with the same initial values, is Hcrgr (ku) . Let us list some formulas 
that are satisfied by these generalized trigonometric functions. The reader 
should mentally consider what they state for the case t = 2. We omit most of 
the similar formulas for the functions fr(u). The reader might like to verify, 
however , that 

ZlfT(u)]2 = t-l7£exp[2u cos(2TTS/t)]. (43) 
* s = 0 

When t -> °°, this gives a familiar formula for the Bessel function IQ(2u) as an 
integral. 

The formula 

exp(uj2s+1) ^E Gr(u)JH2s+l) (44) 
r= 0 

[which is true also when j is replaced by J2p+1 (p = 09 19 29 ...)]9 is a di-
rect generalization of "de Moivrefs formula/1 which is the case t = 2. As in 
ordinary trigonometry we can obtain an addition formula by first deducing an 
expression for exp[(u + y)j2s+l] from (44)9 and then taking the inverse skew 
DRT. Another method, which is closely related, is to note that 

e«J = gQ(u)I + giiu)J + ... + gt_1MJt'1 (45) 

is a skew circulix whose eigenvalues are exp(uj2s+1) (s = 09 19 ..., t - 1). 
Hence, 

t- l 
gr(u + y) = £ ^r,s9s(u)gr+s(y) (r, s = 0, 1, . .., t - 1), (46) 

s = 0 

where eP, s = 1 if P ̂  s and £r, s = -1 if r < s. These identities generalize 
the usual formulas for cos(u + y) and sin(u + z/). It follows9 for example, 
that gr(nu) is a homogeneous polynomial in gQ(u)9 . .., 9t-1(u) (n = Is 23 39 

. . . ) • • 

It seems fair to conclude that the skew circulix has not previously been 
given the attention that it merits. 
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