
A NOTE ON PASCAL-T TRIANGLES, MULTINOMIAL COEFFICIENTS, 
AND PASCAL PYRAMIDS 

RICHARD C. BOLLINGER 
Behrend College, Pennsylvania State University, Erie, PA 16563 

(Submitted August 1984) 

1. INTRODUCTION 

In what follows we give a formula for the entries in the Pascal-27 triangle 
Tm in terms of the multinomial coefficients; this is the counterpart for these 
arrays of the result of Philippou [1] on the elements of the Fibonacci &-se-
quences in terms of the multinomial coefficients. The proof is direct, and the 
method also leads to a recurrence relation which gives the elements of a given 
triangle Tm as a combination of certain elements of the "preceeding" triangle 
Tm-i> t n e coefficients in the combination being binomial coefficients. Final-
ly, because the multinomial coefficients provide the connection here, we offer 
some remarks on those arrays of multinomial coefficients referred to in the 
literature as "Pascal pyramids." 

It will be convenient to recall the definition of the triangle Tm. 

Definition 1.1: For any m ̂  0, Tm is the array whose rows are indexed by n=0, 
1, 2, ..., and columns by k = 09 1, 2, ..., and whose entries are obtained as 
follows: 

a) T0 is the all-zero array; 

b) T1 is the array all of whose rows consist of a one followed by zeros; 

c) Tm9 777^2, is the array whose n = 0 row is a one followed by zeros, whose 
n= 1 row is m ones followed by zeros, and any of whose entries in sub-
sequent rows is the sum of the m entries just above and to the left in 
the preceeding row. 

The entry in row n and column k is denoted by Cm(n9 k), although we note that 

C2(n9 k) = (£), 
since T2 is the Pascal Triangle. There will be n(m - 1)+ 1 nonzero entries in 
row n9 and the principal property we need is that these are the coefficients 
(see, e.g., [2], p. 66) in the expansion 

n(m- 1) 

(1 + t + t2 + ••• + t m " V = £ Cm(n9 k)tk. (1.1) 
k = o 

Although it is easy to use property (c) to build the array Tm by means of the 
relation 

m- 1 
Cm(n9 k) = £ Cm(n - 1, k - j), (1.2) 

j = o 

the main result presented here evaluates Cm(n9 k) directly as a sum of certain 
multinomial coefficients. 
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2* FORMULAS FOR Cm(n, k) 

Theorem 2,1: If Cm(n$ k) is the (n, &)-entry in Tm9 m > 39 then for any n > 0 
and 0 < k < n(m - 1), 

C„(». *> = E (n n * n ). (2.1) 

where the summation is over all m-part compositions nls n2s ..., nm of n such 
that (1) nx + n2 + .-. + nm = n9 and (2) 0n1 + ln2 + ••• + (m - l)nm = fc. 

Proof: The proof follows directly from the multinomial theorem9 for if in 

(Xi +Xz + . . . +Xm)n = W n \x»ix£m„xn.t ( 2 . 2 ) 
\ ri-^ $ • • • s 'frfi?/ 

where the summation is over all m-part compositions of ns we put x^ = tz~1
s 

1 < i < ms we have 

(1 + t + ... +t»-l)» = W " Xt"2 + 2n3+... + (m-l)n„5 ( 2 > 3 ) 

\ttlJ ...5 nmf 

and when the coefficients of tk on the right-hand sides of (1.1) and (2.3) are 
equated, (2.1) follows from conditions (1) and (2). 

Example: ^ ( 4 , 4) - (^ £ Q> Q ) + ( u ^ Q) + (2> Q * 2> 0 ) + ( 2 > ^ ^ 

= 1 + 12 + 6 + 12 = 31 

Another application of the multinomial expansions used partly as a binomial 
expansions gives the following theorem. 

Theorem 2.2: 

Cm(n9 k) = t OK-i<J. k - j). (2.4) 
j = o w / 

Proof: If the left side of (2.2) is grouped as [x1.+ (x2 +••• + xm)]n
9 expanded 

as a binomials and again tv~x is substituted for x^s the result is 

nirn- 1) 

k 

n- I) n 

£ COT(n5 k)tk = E n U ' d + * + eee + t m - 2 ) J . (2.5) 
= o t/ = o x ^ / 

But then the factors .(1 + t +•••+ tm~2)3 may be expressed in terms of Cm-ifss 

using (1.1). When the coefficients of a given power of t on the right of (2.5) 
are collected and equated to the corresponding coefficient on the left9 then 
(2.4) follows. 

Example: C„(4, 4) = (JJ^CO. *) + (JJ^sC1* 3> + (2)^(2, 2) 

+ (3)^3(3, 1) + ( J H < 4 . 0) 

= l-0 + 4«0 + 6-3 + 4-3 + l-l = 31 
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3. THE PASCAL PYRAMID 

The device used in the previous theorem of bracketing off one term of a 
multinomial in order to expand the result as a binomial cans of course, be re-
peated with the remaining multinomial parts, eventually running the unexpanded 
part down to a binomial itself; this offers the possibility of obtaining the 
multinomials entirely as products of binomial coefficients. In fact, this has 
been done in [3] and [4] for a trinomial expansion, with the multinomial coef-
ficients appearing in the successive powers of (x± + x2 + x3) being associated 
with points in triangular arrays, which form successive levels of a pyramidal 
structure—the so-called Pascal pyramid. For example, Figure 1 shows the first 
four levels, with each point labelled with both a multinomial coefficient and 
the composition which gives rise to it (the compositions can be obtained by 
designating the sides as first, second, third in some fashion, and letting n19 
n29 n3 in the composition measure units of perpendicular distances from the 
first, second, third sides, respectively). The law of formation for this tri-
nomial case is clear (and also correct, as is easily verified by doing the re-
duction described earlier): just generate the ordinary Pascal triangle down to 
level n9 and then multiply the rows successively upward by the numbers found 
in the last line. For n = 3, e.g., 

1 _1 • 1 

1 1 J • 1 J • 1 
1 2 1 becomes ^ ^ 2 ^ ± 

1 3 3 1 1 3 3 1 

n = 0 i 

n = l 

n = 2 

(0,0, 0) 

n = 3 

(3. 0. 0} 3 J (0, 3, 0) 

Figure 1. Levels of the Pascal Pyramid for the Case (x1 + x2 + x3) 
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This works nicely, the idea is not restricted to trinomials (the generalization 
is not just a bigger triangle9 but it is similarly simple), and there have been 
several comments to the effect that it is surprising that the Pascal pyramids 
(or hyperpyramids) are not more widely known or used. 

Why should this be? An answer would seem to be that as soon as one gets 
past the trinomials, the method, while still elegant, becomes computationally 
unwieldy. That is, in the usual expansion of a multinomial (x1 +••• + xm)n 

there are ( J terms corresponding to the m-part compositions of n. To 

see what is required to deal with these in terms of products of binomials, we 
look at what might be called the Pascal square, in which we tabulate for m = 0, 
1, 2, ... and n = 0, 1, 2, ... the number of m-part compositions of n (taking 
the entry for m = n = 0 to be one). The first several lines are shown below: 

Pascal Square 

No. P a r t s m 

0 
1 
2 
3 
4 
5 

n 
0 1 2 3 4 5 

1 0 0 0 0 0 
1 1 1 1 1 1 
1 2 3 4 5 6 
1 3 6 10 15 21 
1 4 10 20 35 56 
1 5 15 35 70 126 

Here, the law of formation is that each entry is the sum of alt those entries 
above and to the left of it in the preceeding row, and we recognize the m = 3 
row as the triangular numbers, the m = 4 as the pyramidal numbers, and so on. 
The point here is that the square shows that the trinomials (m = 3) are simple 
sequences of products of binomials; as in the example, the ten trinomials in 
(x± + x2 + x3)3 reduce to 4 + 3 + 2 + 1 products of binomials. But for m > 3, 
we find not sequences, but sequences of sequences. The thirty-five terms in 
(x± + x2 + x3 + xh)h [the (4, 4) entry], e.g., have to be obtained using the 
sequence 

15 = 5 + 4 + 3 + 2 + 1 , 
10= 4 + 3 + 2 + 1 , 
6 = 3 + 2 + 1 , 
3 = 2 + 1, 
1 = 1, 

of sequences of products of binomials. It would seem that in spite of the ap-
peal of an array for multinomial coefficients similar to the triangle for 
binomials, one is better off for most purposes using a convenient algorithm 
(e.g., [5], pp. 46-51) to generate the m-part compositions of n, from which the 
exponents on the x^ and the multinomial associated with a given term are imme-
diately available. 
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